1,248 research outputs found
Intermittency and non-Gaussian fluctuations of the global energy transfer in fully developed turbulence
We address the experimentally observed non-Gaussian fluctuations for the
energy injected into a closed turbulent flow at fixed Reynolds number. We
propose that the power fluctuations mirror the internal kinetic energy
fluctuations. Using a stochastic cascade model, we construct the excess kinetic
energy as the sum over the energy transfers at different levels of the cascade.
We find an asymmetric distribution that strongly resembles the experimental
data. The asymmetry is an explicit consequence of intermittency and the global
measure is dominated by small scale events correlated over the entire system.
Our calculation is consistent with the statistical analogy recently made
between a confined turbulent flow and a critical system of finite size.Comment: To appear in Physical Review Letter
An electric-field representation of the harmonic XY model
The two-dimensional harmonic XY (HXY) model is a spin model in which the
classical spins interact via a piecewise parabolic potential. We argue that the
HXY model should be regarded as the canonical classical lattice spin model of
phase fluctuations in two-dimensional condensates, as it is the simplest model
that guarantees the modular symmetry of the experimental systems. Here we
formulate a lattice electric-field representation of the HXY model and contrast
this with an analogous representation of the Villain model and the
two-dimensional Coulomb gas with a purely rotational auxiliary field. We find
that the HXY model is a spin-model analogue of a lattice electric-field model
of the Coulomb gas with an auxiliary field, but with a temperature-dependent
vacuum (electric) permittivity that encodes the coupling of the spin vortices
to their background spin-wave medium. The spin vortices map to the Coulomb
charges, while the spin-wave fluctuations correspond to auxiliary-field
fluctuations. The coupling explains the striking differences in the
high-temperature asymptotes of the specific heats of the HXY model and the
Coulomb gas with an auxiliary field. Our results elucidate the propagation of
effective long-range interactions throughout the HXY model (whose interactions
are purely local) by the lattice electric fields. They also imply that global
spin-twist excitations (topological-sector fluctuations) generated by local
spin dynamics are ergodically excluded in the low-temperature phase. We discuss
the relevance of these results to condensate physics.Comment: 13 pages, 10 figure
Topological-sector fluctuations and ergodicity breaking at the Berezinskii-Kosterlitz-Thouless transition
The Berezinskii-Kosterlitz-Thouless (BKT) phase transition drives the
unbinding of topological defects in many two-dimensional systems. In the
two-dimensional Coulomb gas, it corresponds to an insulator-conductor
transition driven by charge deconfinement. We investigate the global
topological properties of this transition, both analytically and by numerical
simulation, using a lattice-field description of the two-dimensional Coulomb
gas on a torus. The BKT transition is shown to be an ergodicity breaking
between the topological sectors of the electric field, which implies a
definition of topological order in terms of broken ergodicity. The breakdown of
local topological order at the BKT transition leads to the excitation of global
topological defects in the electric field, corresponding to different
topological sectors. The quantized nature of these classical excitations, and
their strict suppression by ergodicity breaking in the low-temperature phase,
afford striking global signatures of topological-sector fluctuations at the BKT
transition. We discuss how these signatures could be detected in experiments
on, for example, magnetic films and cold-atom systems.Comment: 11 pages, 6 figure
Phase order in superfluid helium films
Classic experimental data on helium films are transformed to estimate a
finite-size phase order parameter that measures the thermal degradation of the
condensate fraction in the two-dimensional superfluid. The order parameter is
found to evolve thermally with the exponent , a
characteristic, in analogous magnetic systems, of the
Berezinskii-Kosterlitz-Thouless (BKT) phase transition. Universal scaling near
the BKT fixed point generates a collapse of experimental data on helium and
ferromagnetic films, and implies new experiments and theoretical protocols to
explore the phase order. These results give a striking example of experimental
finite-size scaling in a critical system that is broadly relevant to
two-dimensional Bose fluids.Comment: 6 pages, 2 figure
Quantum order by disorder and accidental soft mode Er2Ti2O7
Motivated by recent neutron scattering experiments, we derive and study an
effective "pseudo-dipolar" spin-1/2 model for the XY pyrochlore antiferromagnet
Er2Ti2O7. While a bond-dependent in-plane exchange anisotropy removes any
continuous symmetry, it does lead to a one-parameter `accidental' classical
degeneracy. This degeneracy is lifted by quantum fluctuations in favor of the
non-coplanar spin structure observed experimentally -- a rare experimental
instance of quantum order by disorder. A non-Goldstone low-energy mode is
present in the excitation spectrum in accordance with inelastic neutron
scattering data. Our theory also resolves the puzzle of the experimentally
observed continuous ordering transition, absent from previous models.Comment: 5 pages, 4 figures, final versio
Synthesis and thermal analytical screening of metal complexes as potential novel fire retardants in polyamide 6.6
The development of new flame retardants is of ever increasing importance because of ecotoxicity concerns over existing systems and related regulatory pressures. From a range of low-toxicity, water-insoluble reagents, a total of 151 metal complexes were assessed for their potential to impart flame retardant behaviour in polymer matrices. These were successfully synthesised on a small scale and possible interactions were explored with a model engineering polymer, namely polyamide 6.6 (PA66). Powder mixtures of each complex with PA66 in a 1:3 mass ratio were analysed under air using TGA/DTA. Based on the stability of each at the typical processing temperature of 290 °C and its char forming potential (the final residue requirement at 580 °C being > 25%), selected mixtures were then analysed further using a differential mass loss technique. Metal complex/PA66 mixtures in which the differential residual mass above 470 °C was >10% with respect to the theoretical value were considered to have a positive char forming interaction. Only eight of the metal complexes passed this last criterion including aluminium, tin (II) and zinc tungstates, three tin (II) phosphorus oxyanion complexes, iron (II) aluminate and iron (III) hypophosphite. These selected compounds were synthesised on a larger scale (c.a. 100 g), characterised and compounded into PA66 at 5 wt% for flammability assessment using LOI, UL94 and cone calorimetry. Of these, only aluminium tungstate and iron (II) aluminate showed some degree of FR behaviour with LOI values ≥ 23.0 vol% compared with PA66 (LOI = 22.9 vol%) and the former almost achieved a UL94 V-2 rating. However, while up to 32% reductions in total heat releases and up to 49% reduction in PHRR in cone calorimetric tests were observed for the metal complex/PA66 composites generally, those for Al2(WO4)3 were 6 and 29% respectively and for Fe(AlO2)2 were 18 and 45% respectively
Neutron scattering from fragmented frustrated magnets
The fragmentation description is used to analyse calculated neutron
scattering intensities from kagom\'e ice and spin ice systems. The
longitudinal, transverse and harmonic fragments produce independent
contributions to the neutron scattering intensity. This framework is used to
analyse the ordering due to quantum fluctuations in the topologically
constrained phase of kagom\'e ice and the monopole crystal phase of spin ice.
Here, quantum fluctuations are restricted to the transverse fragment and they
drive the system into a double- structure in which longitudinal and
transverse fragments have a different ordering wave vector. The intensity
reduction of the Bragg peaks for the transverse fragments, compared with known
classical limits can be used as a diagnostic tool for quantum fluctuations.
Published quantum Monte Carlo data for spin ice in a field are
consistent with the proposed protocol.Comment: 13 pages, 8 figure
Reply to Comment on " Universal Fluctuations in Correlated Systems"
Reply to the comment, cond-mat/0209398 by by N.W. Watkins, S.C. Chapman, and
G. RowlandsComment: To appear In Physical Review Letter
Exploiting changes in the tumour microenvironment with sequential cytokine and matrix metalloprotease inhibitor treatment in a murine breast cancer model
The study of treatment-induced changes in the tumour microenvironment might lead to effective combinations of biological therapy. IL-12 induced tumour regression and cure of an experimental murine breast cancer, HTH-K, but only after long-term treatment that was associated with chronic toxicity. During IL-12 therapy, tumour levels of the matrix metalloprotease MMP-9 declined and its inhibitor TIMP-1 was strongly induced. We therefore administered alternate cycles of IL-12 and the MMP inhibitor Batimastat (BB94) to mice. Therapeutic efficacy was increased compared with short-term IL-12 therapy but without the chronic toxicity associated with long-term IL-12 treatment. Image analysis of treated tumours revealed that BB94 prevented regeneration of tumour and stromal compartments that normally occurred after short-term IL-12 therapy. © 2000 Cancer Research Campaign http://www.bjcancer.co
- …