6,164 research outputs found

    Competing interactions of spin and lattice in the Kondo lattice model

    Full text link
    The magnetic properties of a system of coexisting localized spins and conduction electrons are investigated within an extended version of the one dimensional Kondo lattice model in which effects stemming from the electron-lattice and on-site Coulomb interactions are explicitly included. After bosonizing the conduction electrons, is it observed that intrinsic inhomogeneities with the statistical scaling properties of a Griffiths phase appear, and determine the spin structure of the localized impurities. The appearance of the inhomogeneities is enhanced by appropriate phonons and acts destructively on the spin ordering. The inhomogeneities appear on well defined length scales, can be compared to the formation of intrinsic mesoscopic metastable patterns which are found in two-fluid systems.Comment: 9 pages, to appear in Jour. Superconductivit

    Constraints on Experimentation: Protecting Children to Death

    Get PDF
    Why are so many adolescent girls becoming pregnant even though contraception is available? What is the best technique for repairing the congenital heart defects that still kill many newborns? Is it possible to develop a drug that will slow or stop progression of brain tumors in children? These questions are among those being asked today by researchers

    Ergodic Transport Theory, periodic maximizing probabilities and the twist condition

    Full text link
    The present paper is a follow up of another one by A. O. Lopes, E. Oliveira and P. Thieullen which analyze ergodic transport problems. Our main focus will a more precise analysis of case where the maximizing probability is unique and is also a periodic orbit. Consider the shift T acting on the Bernoulli space \Sigma={1, 2, 3,.., d}^\mathbb{N} and and A:\Sigma \to \mathbb{R} a Holder potential. Denote m(A)=max_{\nu is an invariant probability for T} \int A(x) \; d\nu(x) and, \mu_{\infty,A}, any probability which attains the maximum value. We assume this probability is unique (a generic property). We denote \T the bilateral shift. For a given potential Holder A:\Sigma \to \mathbb{R}, we say that a Holder continuous function W: \hat{\Sigma} \to \mathbb{R} is a involution kernel for A, if there is a Holder function A^*:\Sigma \to \mathbb{R}, such that, A^*(w)= A\circ \T^{-1}(w,x)+ W \circ \T^{-1}(w,x) - W(w,x). We say that A^* is a dual potential of A. It is true that m(A)=m(A^*). We denote by V the calibrated subaction for A, and, V^* the one for A^*. We denote by I^* the deviation function for the family of Gibbs states for \beta A, when \beta \to \infty. For each x we get one (more than one) w_x such attains the supremum above. That is, solutions of V(x) = W(w_x,x) - V^* (w_x)- I^*(w_x). A pair of the form (x,w_x) is called an optimal pair. If \T is the shift acting on (x,w) \in {1, 2, 3,.., d}^\mathbb{Z}, then, the image by \T^{-1} of an optimal pair is also an optimal pair. Theorem - Generically, in the set of Holder potentials A that satisfy (i) the twist condition, (ii) uniqueness of maximizing probability which is supported in a periodic orbit, the set of possible optimal w_x, when x covers the all range of possible elements x in \in \Sigma, is finite

    Spatial Reasoning as Related to Solving Story Type Problems

    Get PDF
    In this study it was hypothesized that the ability to mentally solve II story type problems, those presented in the form of sentences, is significantly related to one\u27s spatial reasoning ability and that a weakness in this ability, when tested by the story type problems, could be compensated for by training in and utilization of overt paper and pencil manipulations. To test the hypothesis, three measures were used. These were the DAT Verbal Reasoning test--used to control the factor of verbal reasoning, the DAT Space Relations test--used to measure spatial reasoning ability, and two forms of a test composed of story type problems--used to measure problem-solving ability. A large group of college students (146) were first tested on the DAT tests and then 18 pairs were selected which were matched as nearly as possible on verbal reasoning abilities while keeping their spatial reasoning abilities as diverse as possible. The 18 pairs were then tested and retested on the problem-solving tests with half of the pairs receiving problem-solving instructions prior to the retest. Statistical analysis of the results confirmed the hypothesis in that it revealed a substantial positive correlation between spatial reasoning ability and the ability to solve story type problems. Also, an analysis of the results showed, to a significant degree, that a weakness in spatial reasoning ability, when used to solve the type of problems considered, can be compensated for by using paper and pencil manipulations involving graphic procedures

    The Impact of Halo Properties, Energy Feedback and Projection Effects on the Mass-SZ Flux Relation

    Full text link
    We present a detailed analysis of the intrinsic scatter in the integrated SZ effect - cluster mass (Y-M) relation, using semi-analytic and simulated cluster samples. Specifically, we investigate the impact on the Y-M relation of energy feedback, variations in the host halo concentration and substructure populations, and projection effects due to unresolved clusters along the line of sight (the SZ background). Furthermore, we investigate at what radius (or overdensity) one should measure the integrated SZE and define cluster mass so as to achieve the tightest possible scaling. We find that the measure of Y with the least scatter is always obtained within a smaller radius than that at which the mass is defined; e.g. for M_{200} (M_{500}) the scatter is least for Y_{500} (Y_{1100}). The inclusion of energy feedback in the gas model significantly increases the intrinsic scatter in the Y-M relation due to larger variations in the gas mass fraction compared to models without feedback. We also find that variations in halo concentration for clusters of a given mass may partly explain why the integrated SZE provides a better mass proxy than the central decrement. Substructure is found to account for approximately 20% of the observed scatter in the Y-M relation. Above M_{200} = 2x10^{14} h^{-1} msun, the SZ background does not significantly effect cluster mass measurements; below this mass, variations in the background signal reduce the optimal angular radius within which one should measure Y to achieve the tightest scaling with M_{200}.Comment: 12 pages, 6 figures, to be submitted to Ap

    Oxygen-isotope effect on the superconducting gap in the cuprate superconductor Y_{1-x}Pr_xBa_2Cu_3O_{7-\delta}

    Full text link
    The oxygen-isotope (^{16}O/^{18}O) effect (OIE) on the zero-temperature superconducting energy gap \Delta_0 was studied for a series of Y_{1-x}Pr_xBa_2Cu_3O_{7-\delta} samples (0.0\leq x\leq0.45). The OIE on \Delta_0 was found to scale with the one on the superconducting transition temperature. These experimental results are in quantitative agreement with predictions from a polaronic model for cuprate high-temperature superconductors and rule out approaches based on purely electronic mechanisms.Comment: 5 pages, 3 figure

    Linking physics and art

    Get PDF

    Polaron Coherence as Origin of the Pseudogap Phase in High Temperature Superconducting Cuprates

    Get PDF
    Within a two component approach to high Tc copper oxides including polaronic couplings, we identify the pseudogap phase as the onset of polaron ordering. This ordering persists in the superconducting phase. A huge isotope effect on the pseudogap onset temperature is predicted and in agreement with experimental data. The anomalous temperature dependence of the mean square copper oxygen ion displacement observed above, at and below Tc stems from an s-wave superconducting component of the order parameter, whereas a pure d-wave order parameter alone can be excluded.Comment: 7 pages, 2 figure
    corecore