280 research outputs found
Wiping out MRSA:effect of introducing a universal disinfection wipe in a large UK teaching hospital
Abstract Background Contamination of the inanimate environment around patients constitutes an important reservoir of MRSA. Here we describe the effect of introducing a universal disinfection wipe in all wards on the rates of MRSA acquisitions and bacteraemias across a large UK teaching hospital. Methods A segmented Poisson regression model was used to detect any significant changes in the monthly numbers per 100,000 bed days of MRSA acquisitions and bacteraemias from April 2013 - December 2017 across QEHB. Results From April 2013 to April 2016, cleaning of ward areas and multi-use patient equipment by nursing staff consisted of a two-wipe system. Firstly, a detergent wipe was used, which was followed by a disinfection step using an alcohol wipe. In May 2016, QEHB discontinued the use of a two-wipe system for cleaning and changed to a one wipe system utilising a combined cleaning and disinfection wipe containing a quaternary ammonium compound. The segmented Poisson regression model demonstrated that the rate of MRSA acquisition/100,000 patient bed days was affected by the introduction of the new wiping regime (20.7 to 9.4 per 100,000 patient bed days; p <0.005). Discussion Using a Poisson model we demonstrated that the average hospital acquisition rate of MRSA/100,000 patient bed days reduced by 6.3% per month after the introduction of the new universal wipe. Conclusion We suggest that using a simple one wipe system for nurse cleaning is an effective strategy to reduce the spread and incidence of healthcare associated MRSA
The value of the infection prevention and control nurse led MRSA ward round
Abstract Meticillin-resistant S. aureus (MRSA) is prevalent in most parts of the world. The study took place at Queen Elizabeth Hospital Birmingham (QEHB) a UK tertiary referral hospital. At QEHB innovative nurse led daily ward rounds for patients that acquire hospital acquired MRSA during their hospital stay are undertaken. The aim is to optimise care delivered for these patients whilst at QEHB, thereby reducing the risk of infection in patients with healthcare-acquired MRSA. A segmented Poisson regression model suggests that the MRSA bacteraemia rate was affected where an 88.94% reduction (p = 0.0561) in bacteraemias was seen by the introduction of these ward rounds. We describe a nurse led MRSA ward round which was associated with a lower rate of MRSA bacteraemias
Is characteristic frequency limiting real-time electrocochleography during cochlear implantation?
Objectives: Electrocochleography (ECochG) recordings during cochlear implantation have shown promise in estimating the impact on residual hearing. The purpose of the study was (1) to determine whether a 250-Hz stimulus is superior to 500-Hz in detecting residual hearing decrement and if so; (2) to evaluate whether crossing the 500-Hz tonotopic, characteristic frequency (CF) place partly explains the problems experienced using 500-Hz.
Design: Multifrequency ECochG comprising an alternating, interleaved acoustic complex of 250- and 500-Hz stimuli was used to elicit cochlear microphonics (CMs) during insertion. The largest ECochG drops (≥30% reduction in CM) were identified. After insertion, ECochG responses were measured using the individual electrodes along the array for both 250- and 500-Hz stimuli. Univariate regression was used to predict whether 250- or 500-Hz CM drops explained low-frequency pure tone average (LFPTA; 125-, 250-, and 500-Hz) shift at 1-month post-activation. Postoperative CT scans were performed to evaluate cochlear size and angular insertion depth.
Results: For perimodiolar insertions (
Conclusion: Using 250-Hz stimulus for ECochG feedback during implantation is more predictive of hearing preservation than 500-Hz. This is due to the electrode passing the 500-Hz CF during insertion which may be misidentified as intracochlear trauma; this is particularly important in subjects with smaller cochlear diameters and deeper insertions. Multifrequency ECochG can be used to differentiate between trauma and advancement of the apical electrode beyond the CF
Can a toxin gene NAAT be used to predict toxin EIA and the severity of Clostridium difficile infection?
Abstract Background Diagnosis of C. difficile infection (CDI) is controversial because of the many laboratory methods available and their lack of ability to distinguish between carriage, mild or severe disease. Here we describe whether a low C. difficile toxin B nucleic acid amplification test (NAAT) cycle threshold (CT) can predict toxin EIA, CDI severity and mortality. Methods A three-stage algorithm was employed for CDI testing, comprising a screening test for glutamate dehydrogenase (GDH), followed by a NAAT, then a toxin enzyme immunoassay (EIA). All diarrhoeal samples positive for GDH and NAAT between 2012 and 2016 were analysed. The performance of the NAAT CT value as a classifier of toxin EIA outcome was analysed using a ROC curve; patient mortality was compared to CTs and toxin EIA via linear regression models. Results A CT value ≤26 was associated with ≥72% toxin EIA positivity; applying a logistic regression model we demonstrated an association between low CT values and toxin EIA positivity. A CT value of ≤26 was significantly associated (p = 0.0262) with increased one month mortality, severe cases of CDI or failure of first line treatment. The ROC curve probabilities demonstrated a CT cut off value of 26.6. Discussions Here we demonstrate that a CT ≤26 indicates more severe CDI and is associated with higher mortality. Samples with a low CT value are often toxin EIA positive, questioning the need for this additional EIA test. Conclusions A CT ≤26 could be used to assess the potential for severity of CDI and guide patient treatment
Cisplatin drug delivery using gold-coated iron oxide nanoparticles for enhanced tumour targeting with external magnetic fields
The platinum-based chemotherapeutic drug cisplatin is highly effective in the treatment of solid tumours, but its use is restricted by poor bioavailability, severe dose-limiting side effects and rapid development of drug resistance. In light of this we have tethered the active component of cisplatin to goldcoated iron oxide nanoparticles to improve its delivery to tumours and increase its efficacy. Iron oxide nanoparticles (FeNPs) were synthesised via a co-precipitation method before gold was reduced onto the surface (Au@FeNPs). Aquated cisplatin was used to attach {Pt(NH3)2} to the nanoparticles by a thiolated polyethylene glycol linker forming the desired product (Pt@Au@FeNP). The nanoparticles were characterised by dynamic light scattering, scanning transmission electron microscopy, UV–Vis spectrophotometry, inductively coupled plasma mass spectrometry and electron probe microanalysis. The nanoparticles increase in size as they are constructed, with the synthesised FeNPs having a diameter of 5– 50 nm, which increases to 20–80 nm for the Au@FeNPs, and to 60–120 nm for the Pt@Au@FeNPs. Nanoparticle drug loading was found to be 7.9 10 4 moles of platinum per gram of gold. The FeNPs appear to have little inherent cytotoxicity, whereas the Au@FeNPs are as active as cisplatin in the A2780 and A2780/cp70 cancer cell lines. More importantly the Pt@Au@FeNPs are up to 110-fold more cytotoxic than cisplatin. Finally, external magnets were used to demonstrate that the nanoparticles could be accumulated in specific regions and that cell growth inhibition was localised to those areas
A Profile in Population Health Management: The Sandra Eskenazi Center for Brain Care Innovation
This article describes how key aspects of the Sandra Eskenazi Center for Brain Care Innovation's (SECBCI) care model can inform other entities on the development of new models of population health management, through a framework that emphasizes social, behavioral, and environmental determinants of health, as well as biomedical aspects. The SECBCI is a collaboration with Eskenazi Health and community-based organizations such as the Central Indiana Council on Aging Area Agency on Aging and the Greater Indianapolis Chapter of the Alzheimer's Association in Central Indiana
Developing the Agile Implementation Playbook for Integrating Evidence-Based Health Care Services into Clinical Practice
Problem: Despite the more than $32 billion the National Institutes of Health has invested annually, evidence-based health care services are not reliably implemented, sustained, or distributed in health care delivery organizations, resulting in suboptimal care and patient harm. New organizational approaches and frameworks that reflect the complex nature of health care systems are needed to achieve this goal.
Approach: To guide the implementation of evidence-based health care services at their institution, the authors used a number of behavioral theories and frameworks to develop the Agile Implementation (AI) Playbook, which was finalized in 2015. The AI Playbook leverages these theories in an integrated approach to selecting an evidence-based health care service to meet a specific opportunity, rapidly implementing the service, evaluating its fidelity and impact, and sustaining and scaling up the service across health care delivery organizations. The AI Playbook includes an interconnected eight-step cycle: (1) identify opportunities; (2) identify evidence-based health care services; (3) develop evaluation and termination plans; (4) assemble a team to develop a minimally viable service; (5) perform implementation sprints; (6) monitor implementation performance; (7) monitor whole system performance; and (8) develop a minimally standardized operating procedure.
Outcomes: The AI Playbook has helped to improve care and clinical outcomes for intensive care unit survivors and is being used to train clinicians and scientists in AI to be quality improvement advisors.
Next Steps: The authors plan to continue disseminating the details of the AI Playbook and illustrating how health care delivery organizations can successfully leverage it
- …