1,432 research outputs found
Critical thickness and orbital ordering in ultrathin La0.7Sr0.3MnO3 films
Detailed analysis of transport, magnetism and x-ray absorption spectroscopy
measurements on ultrathin La0.7Sr0.3MnO3 films with thicknesses from 3 to 70
unit cells resulted in the identification of a lower critical thickness for a
non-metallic, non-ferromagnetic layer at the interface with the SrTiO3 (001)
substrate of only 3 unit cells (~12 Angstrom). Furthermore, linear dichroism
measurements demonstrate the presence of a preferred (x2-y2) in-plane orbital
ordering for all layer thicknesses without any orbital reconstruction at the
interface. A crucial requirement for the accurate study of these ultrathin
films is a controlled growth process, offering the coexistence of
layer-by-layer growth and bulk-like magnetic/transport properties.Comment: 22 pages, 6 figures, accepted for publication in Physical Review
Application of Wavelet Analysis on Transient Rlectivity in Ultra-thin Films
Applications of wavelet analysis in ultra-thin film transient reflectivity (TR) measurements have been investigated. Advantages of utilizing different localized wavelet bases, in position and time, have been addressed on the residual TR signals. Morse wavelets have been used to obtain information from the abrupt oscillatory modes in the signal, which are not distinguishable with conventional methods such as Fourier transforms. These abrupt oscillatory modes are caused by the surface, interface, or any short-lived oscillatory modes which are suppressed in the TR signal in ultra-thin films. It is demonstrated that by choosing different Morse wavelets, information regarding different oscillatory modes in the TR signal of a heterostructure thin film is achievable. Moreover, by performing wavelet analysis on multiferroic heterostructures, oscillatory modes with very close energy ranges are easily distinguishable. For illustration, residuals of the TR signals have been obtained by a pumpprobe setup in reflectivity mode on La0.7Sr0.3MnO3/SrTiO3 and BaTiO3/La0.7Sr0.3MnO3/SrTiO3 samples, where sufficient signal to noise ratios have been achieved by taking multiple scans. The residual signals have been analyzed with Morse wavelets, and multiple oscillatory modes with close energy ranges have been observed and distinguished. This approach can isolate the location of various oscillatory modes at the surface, interface and in the bulk of the heterostructure sample
Recommended from our members
Oxidation of Interconnect Alloys in an Electric Field
The effect of an electric field on the oxidation of interconnect alloys was examined with a representative array of materials: an iron-base ferritic chromia former (E-brite), an iron-base ferritic chromia former with Mn and La (Crofer 22APU), a nickel-base chromia former (IN-718), and a nickelbase chromia former with Mn and La (Haynes 230). Environmental variables include temperature and oxygen partial pressure. The resulting scales were examined to determine if applied electrical current induces changes in mechanism or scale growth kinetics
Recommended from our members
Materials Performance in USC Steam
The proposed steam inlet temperature in the Advanced Ultra Supercritical (A-USC) steam turbine is high enough (760 °C) that traditional turbine casing and valve body materials such as ferritic/martensitic steels will not suffice due to temperature limitations of this class of materials. Cast versions of several traditionally wrought Ni-based superalloys were evaluated for use as casing or valve components for the next generation of industrial steam turbines. The full size castings are substantial: 2-5,000 kg each half and on the order of 100 cm thick. Experimental castings were quite a bit smaller, but section size was retained and cooling rate controlled to produce equivalent microstructures. A multi-step homogenization heat treatment was developed to better deploy the alloy constituents. The most successful of these cast alloys in terms of creep strength (Haynes 263, Haynes 282, and Nimonic 105) were subsequently evaluated by characterizing their microstructure as well as their steam oxidation resistance (at 760 and 800 °C)
Recommended from our members
Cast Alloys for Advanced Ultra Supercritical Steam Turbines
The proposed steam inlet temperature in the Advanced Ultra Supercritical (A-USC) steam turbine is high enough (760 °C) that traditional turbine casing and valve body materials such as ferritic/martensitic steels will not suffice due to temperature limitations of this class of materials. Cast versions of several traditionally wrought Ni-based superalloys were evaluated for use as casing or valve components for the next generation of industrial steam turbines. The full size castings are substantial: 2-5,000 kg each half and on the order of 100 cm thick. Experimental castings were quite a bit smaller, but section size was retained and cooling rate controlled to produce equivalent microstructures. A multi-step homogenization heat treatment was developed to better deploy the alloy constituents. The most successful of these cast alloys in terms of creep strength (Haynes 263, Haynes 282, and Nimonic 105) were subsequently evaluated by characterizing their microstructure as well as their steam oxidation resistance (at 760 and 800 °C)
Crushing singularities in spacetimes with spherical, plane and hyperbolic symmetry
It is shown that the initial singularities in spatially compact spacetimes
with spherical, plane or hyperbolic symmetry admitting a compact constant mean
curvature hypersurface are crushing singularities when the matter content of
spacetime is described by the Vlasov equation (collisionless matter) or the
wave equation (massless scalar field). In the spherically symmetric case it is
further shown that if the spacetime admits a maximal slice then there are
crushing singularities both in the past and in the future. The essential
properties of the matter models chosen are that their energy-momentum tensors
satisfy certain inequalities and that they do not develop singularities in a
given regular background spacetime.Comment: 19 page
Projected shell model study of odd-odd f-p-g shell proton-rich nuclei
A systematic study of 2-quasiparticle bands of the proton-rich odd-odd nuclei
in the mass A ~ 70-80 region is performed using the projected shell model
approach. The study includes Br-, Rb-, and Y-isotopes with N = Z+2, and Z+4. We
describe the energy spectra and electromagnetic transition strengths in terms
of the configuration mixing of the angular-momentum projected
multi-quasiparticle states. Signature splitting and signature inversion in the
rotational bands are discussed and are shown to be well described. A
preliminary study of the odd-odd N = Z nucleus, 74Rb using the concept of
spontaneous symmetry breaking is also presented.Comment: 14 pages, 7 figures, final version accepted by Phys. Rev.
Recommended from our members
Evaluation of a Surface Treatment on the Performance of Stainless Steels for SOFC Interconnect Applications
Pack cementation-like Cerium based surface treatments have been found to be effective in enhancing the oxidation resistance of ferritic steels (Crofer 22APU) for solid oxide fuel cell (SOFC) applications. The application of either a CeN- or CeO2 based surface treatment results in a decrease in weight gain by a factor of three after 4000 hours exposure to air+3%H2O at 800oC. Similar oxide scales formed on treated and untreated surfaces, with a continuous Cr-Mn outer oxide layer and a continuous inner Cr2O3 layer formed on the surface. However, the thickness of the scales, and the amount of internal oxidation were significantly reduced with the treatment, leading to the decrease in oxidation rate. This presentation will detail the influence of the treatment on the electrical properties of the interconnect. Half-cell experiments (LSM cathode sandwiched between two steel interconnects) and full SOFC button cell experiments were run with treated and untreated interconnects. Preliminary results indicate the Ce treatment can improve SOFC performance
Wavelet and R/S analysis of the X-ray flickering of cataclysmic variables
Recently, wavelets and R/S analysis have been used as statistical tools to
characterize the optical flickering of cataclysmic variables. Here we present
the first comprehensive study of the statistical properties of X-ray flickering
of cataclysmic variables in order to link them with physical parameters. We
analyzed a sample of 97 X-ray light curves of 75 objects of all classes
observed with the XMM-Newton space telescope. By using the wavelets analysis,
each light curve has been characterized by two parameters, alpha and Sigma,
that describe the energy distribution of flickering on different timescales and
the strength at a given timescale, respectively. We also used the R/S analysis
to determine the Hurst exponent of each light curve and define their degree of
stochastic memory in time. The X-ray flickering is typically composed of long
time scale events (1.5 < alpha < 3), with very similar strengths in all the
subtypes of cataclysmic variables (-3 < Sigma < -1.5). The X-ray data are
distributed in a much smaller area of the alpha-Sigma parameter space with
respect to those obtained with optical light curves. The tendency of the
optical flickering in magnetic systems to show higher Sigma values than the
non-magnetic systems is not encountered in the X-rays. The Hurst exponents
estimated for all light curves of the sample are larger than those found in the
visible, with a peak at 0.82. In particular, we do not obtain values lower than
0.5. The X-ray flickering presents a persistent memory in time, which seems to
be stronger in objects containing magnetic white dwarf primaries. The
similarity of the X-ray flickering in objects of different classes together
with the predominance of a persistent stochastic behavior can be explained it
terms of magnetically-driven accretion processes acting in a considerable
fraction of the analyzed objects.Comment: 10 pages, 3 figures, 2 tables. Language revision. Accepted for
publication in A&
- …