123 research outputs found

    Soluble Tumor Necrosis Factor Receptor Mediates Cell Proliferation on Lipopolysaccharide-Stimulated Cultured Human Decidual Stromal Cells

    Get PDF
    The tumor necrosis factor-alpha (TNF-α) cytokine receptor system modulates apoptosis in many cell types, so we have investigated the role of sTNFR1 in bacterial lipopolysaccharide (LPS)-induced cell death in cultured human decidual stromal cells, hypothesizing that sTNFR1 might play a central role in this action. In this work we characterized in vitro decidual stromal cell viability with LPS treatment and LPS and sTNFR1 co-treatment. We found that LPS treatment induced decidual stromal cell death in a dose-dependent manner and that sTNFR1 blocked the effect of the LPS treatment. There was a significant proliferation among cells co-incubated with LPS at 10 μg/mL and sTNFR1 at 0.1 μg/mL compared with LPS and sTNFR1 at 0.01, 0.05, 0.2 and 0.5 μg/mL (p < 0.01). This study demonstrated that LPS led to decidual stromal cell death in vitro but sTNFR1 down-regulates the cell death due to LPS under the same conditions. Taken together, these results suggested that sTNFR1 could participate in a protective mechanism against endotoxin

    Monozygotic multiple gestation following in vitro fertilization: analysis of seven cases from Japan

    Get PDF
    We present a series of monozygous multiple gestations achieved following in vitro fertilization (IVF): one case of monochorionic triplet pregnancy and six cases of dizygotic triplet pregnancy. From September 2000 to December 2006, all patients achieving clinical pregnancy by ART were reviewed (n = 2433). A 37 year-old woman who delivered a healthy singleton after IVF returned two years later for FET, and a single blastocyst was transferred. This also resulted in pregnancy, but TV-USG revealed a single gestational sac with three distinct amniotic sacs, each containing a distinct fetal pole with cardiac activity. This pregnancy was electively terminated at nine weeks' gestation. An additional six cases of dizygotic triplets established after fresh embryo transfer (no ICSI or assisted hatching) are also described. Of these, one resulted in a miscarriage at eight weeks' gestation and five patients have an ongoing pregnancy. This case series suggests the incidence of dizygotic/monochorionic triplets following IVF is approximately 10 times higher than the expected rate in unassisted conceptions, and underscores the importance of a conservative approach to lower the number of embryos at transfer. The role of embryo transfer technique and in vitro culture media in the twinning process requires further study

    Placental determinants of fetal growth: identification of key factors in the insulin-like growth factor and cytokine systems using artificial neural networks

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Changes and relationships of components of the cytokine and IGF systems have been shown in placenta and cord serum of fetal growth restricted (FGR) compared with normal newborns (AGA). This study aimed to analyse a data set of clinical and biochemical data in FGR and AGA newborns to assess if a mathematical model existed and was capable of identifying these two different conditions in order to identify the variables which had a mathematically consistent biological relevance to fetal growth.</p> <p>Methods</p> <p>Whole villous tissue was collected at birth from FGR (N = 20) and AGA neonates (N = 28). Total RNA was extracted, reverse transcribed and then real-time quantitative (TaqMan) RT-PCR was performed to quantify cDNA for IGF-I, IGF-II, IGFBP-1, IGFBP-2 and IL-6. The corresponding proteins with TNF-α in addition were assayed in placental lysates using specific kits. The data were analysed using Artificial Neural Networks (supervised networks), and principal component analysis and connectivity map.</p> <p>Results</p> <p>The IGF system and IL-6 allowed to predict FGR in approximately 92% of the cases and AGA in 85% of the cases with a low number of errors. IGF-II, IGFBP-2, and IL-6 content in the placental lysates were the most important factors connected with FGR. The condition of being FGR was connected mainly with the IGF-II placental content, and the latter with IL-6 and IGFBP-2 concentrations in placental lysates.</p> <p>Conclusion</p> <p>These results suggest that further research in humans should focus on these biochemical data. Furthermore, this study offered a critical revision of previous studies. The understanding of this system biology is relevant to the development of future therapeutical interventions possibly aiming at reducing IL-6 and IGFBP-2 concentrations preserving IGF bioactivity in both placenta and fetus.</p

    Diabetes and hypertension increase the placental and transcellular permeation of the lipophilic drug diazepam in pregnant women

    Get PDF
    Background: Previous studies carried out in our laboratories have demonstrated impaired drug permeation in diabetic animals. In this study the permeation of diazepam (after a single dose of 5 mg/day, administered intramuscularly) will be investigated in diabetic and hypertensive pregnant women.Methods: A total 75 pregnant women were divided into three groups: group 1 (healthy control, n = 31), group 2 (diabetic, n = 14) and group 3 (hypertensive, n = 30). Two sets of diazepam plasma concentrations were collected and measured (after the administration of the same dose of diazepam), before, during and after delivery. The first set of blood samples was taken from the mother (maternal venous plasma). The second set of samples was taken from the fetus (fetal umbilical venous and arterial plasma). In order to assess the effect of diabetes and hypertension on diazepam placental-permeation, the ratios of fetal to maternal blood concentrations were determined. Differences were considered statistically significant if p=0.05.Results: The diabetes and hypertension groups have 2-fold increase in the fetal umbilical-venous concentrations, compared to the maternal venous concentrations. Feto: maternal plasma-concentrations ratios were higher in diabetes (2.01 ± 1.10) and hypertension (2.26 ± 1.23) groups compared with control (1.30 ± 0.48) while, there was no difference in ratios between the diabetes and hypertension groups. Umbilical-cord arterial: venous ratios (within each group) were similar among all groups (control: 0.97 ± 0.32; hypertension: 1.08 ± 0.60 and diabetes: 1.02 ± 0.77).Conclusions: On line with our previous findings which demonstrate disturbed transcellular trafficking of lipophilic drugs in diabetes, this study shows significant increase in diazepam placental-permeation in diabetic and hypertensive pregnant women suggesting poor transcellular control of drug permeation and flux, and bigger exposure of the fetus to drug-placental transport

    The role of various transporters in the placental uptake of ofloxacin in an in vitro model of human villous trophoblasts

    No full text
    Hana Polachek,1,* Nir Debotton,2,* Valeria Feinshtein,1 Mazal Rubin,1 Zvi Ben-Zvi,1,&Dagger; Gershon Holcberg,3 Riad Agbaria,1 Arik Dahan1 1Department of Clinical Pharmacology, School of Pharmacy, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel; 2Department of Chemical Engineering, Shenkar College of Engineering and Design, Ramat-Gan, Israel; 3Division of Obstetrics and Gynecology, Soroka University Medical Center, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel *These authors contributed equally to this work &Dagger;Professor Zvi Ben-Zvi passed away on August 4, 2017 Introduction: Six years after the US Food and Drug Administration approval of the broad-spectrum antibiotic ofloxacin (OFLX), the chiral switching of this racemic mixture resulted in a drug composed of the l-optical isomer levofloxacin (LVFX). Since both fluoroquinolones (FQs) were introduced to the pharmaceutical market, they have been widely prescribed by physicians, with careful administration during pregnancy and breastfeeding. Therefore, the role of the influx and efflux placental transporters in the concentrations of these drugs that permeate through human placental barrier model was investigated in this study. Methods: The contribution of major carriers on the transplacental flux of OFLX and LVFX uptake into choriocarcinoma BeWo cells was evaluated in the presence vs absence of well-known inhibitors. Results: Our results reveal that neither the influx transporters such as organic cation transporters, organic anion transporters, and monocarboxylate transporters nor the efflux transporters such as P-glycoprotein or breast cancer resistance protein significantly affected the transport of OFLX. In contrast, multiple transporters revealed pronounced involvement in the transfer of the levorotatory enantiomer in and out of the in&nbsp;vitro placental barrier. These data suggest a non-carrier-mediated mechanism of transport of the racemic mixture, while LVFX is subjected to major influx and efflux passage through the placental brush border membranes. Conclusion: This study provides underlying insights to elucidate the governing factors that influence the flux of these FQs through organ barriers, in view of the controversial safety profile of these drugs in pregnant population. Keywords: drug transport, fluoroquinolones, levofloxacin, ofloxacin, placenta, pregnanc
    corecore