15 research outputs found

    Pitfalls of vaccinations with WT1-, Proteinase3- and MUC1-derived peptides in combination with MontanideISA51 and CpG7909

    Get PDF
    T cells with specificity for antigens derived from Wilms Tumor gene (WT1), Proteinase3 (Pr3), and mucin1 (MUC1) have been demonstrated to lyse acute myeloid leukemia (AML) blasts and multiple-myeloma (MM) cells, and strategies to enhance or induce such tumor-specific T cells by vaccination are currently being explored in multiple clinical trials. To test safety and immunogenicity of a vaccine composed of WT1-, Pr3-, and MUC1-derived Class I-restricted peptides and the pan HLA-DR T helper cell epitope (PADRE) or MUC1-helper epitopes in combination with CpG7909 and MontanideISA51, four patients with AML and five with MM were repetitively vaccinated. No clinical responses were observed. Neither pre-existing nor naive WT1-/Pr3-/MUC1-specific CD8+ T cells expanded in vivo by vaccination. In contrast, a significant decline in vaccine-specific CD8+ T cells was observed. An increase in PADRE-specific CD4+ T helper cells was observed after vaccination but these appeared unable to produce IL2, and CD4+ T cells with a regulatory phenotype increased. Taken into considerations that multiple clinical trials with identical antigens but different adjuvants induced vaccine-specific T cell responses, our data caution that a vaccination with leukemia-associated antigens can be detrimental when combined with MontanideISA51 and CpG7909. Reflecting the time-consuming efforts of clinical trials and the fact that 1/3 of ongoing peptide vaccination trails use CpG and/or Montanide, our data need to be taken into consideration

    Identification of a 40S ribosomal protein S4-derived H-Y epitope able to elicit a lymphoblast-specific cytotoxic T lymphocyte response

    No full text
    PURPOSE: The superior graft-versus-leukemia (GVL) effect of the female-to-male stem cell transplantation is partially independent from the concomitant graft-versus-host reactivity. However, the antigenic basis of this selective GVL response remains enigmatic, because no H-Y antigens with hematopoietic-restricted expression were identified. In this study, we report a novel H-Y epitope that is preferentially recognized on activated proliferating lymphocytes. EXPERIMENTAL DESIGN: We generated a CTL clone YKIII.8 that showed reactivity toward male B*5201+ CD40-activated B cells, EBV-lymphoblastoid cell lines, and phytohemagglutinin-activated T-cell blasts but little or no reactivity toward fibroblasts, CD14+ cells, or unstimulated B and T cells. The antigen recognized by YKIII.8 was identified by screening of a cDNA expression library, and its pattern of expression was investigated. RESULTS: cDNA of the male isoform of 40S ribosomal protein S4 was found to encode the antigenic peptide TIRYPDPVI, which was recognized by YKIII.8. Western blot analysis showed that rapidly proliferating cells overexpress the RPS4 protein in comparison with nonrecognized cell subsets. Retroviral transfer of YKIII.8 T-cell receptor resulted in preservation of the lymphoblast-specific reactivity pattern. CONCLUSION: Our findings suggest that CTL specific to certain epitopes of ubiquitously expressed H-Y antigens may specifically target lymphoblasts, contributing to the selective GVL effect of female-to-male stem cell transplantatio

    Complement-induced cell death by rituximab depends on CD20 expression level and acts complementary to antibody-dependent cellular cytotoxicity

    No full text
    PURPOSE: The use of the CD20-specific antibody rituximab has greatly improved the response to treatment of CD20+ follicular lymphoma. Despite the success of rituximab, resistance has been reported and prognostic markers to predict individual response are lacking. The level of CD20 expression on tumors has been related to response, but results of several studies are contradictory and no clear relationship could be established. Complement-dependent cytotoxicity (CDC) and antibody-dependent cellular cytotoxicity (ADCC) are thought to be important effector mechanisms, but the exact mechanism of rituximab-mediated cell kill is still unknown. Importantly, no data have been reported on the combined contribution of CDC and ADCC. EXPERIMENTAL DESIGN: We have developed a system of clonally related CEM-CD20 cells by retroviral transfer of the human CD20 cDNA (n = 90). This set of cells, with the CD20 molecule as the only variable, was used to study the importance of CD20 expression level on rituximab-mediated CDC, ADCC, and the combination. RESULTS: We show a sigmoidal correlation of CD20 expression level and rituximab-mediated killing via CDC but not ADCC. On both high and low CD20-expressing cells, all CD20 molecules were translocated into lipid rafts after rituximab binding. Furthermore, CDC and ADCC act simultaneously and CDC-resistant cells are sensitive to ADCC and vice versa. CONCLUSIONS: These findings suggest that CDC depends on CD20 expression level and that both CDC and ADCC act complementary. These data give new insights into novel strategies to improve the efficacy of CD20-specific antibodies for the treatment of CD20+ tumor

    HLA-DRB1*16-restricted recognition of myeloid cells, including CD34+ CML progenitor cells

    No full text
    The therapeutic effect of a human leucocyte antigen (HLA)-identical allogeneic stem cell transplantation (allo-SCT) for the treatment of haematological malignancies is mediated partly by the allogeneic T cells that are administered together with the stem cell graft. Chronic myeloid leukaemia (CML) is particularly sensitive to this graft-versus-leukaemia (GVL) effect. Several studies have shown that in allogeneic responses both CD4 and CD8 cells are capable of strong antigen-specific growth inhibition of leukaemic progenitor cells, but that CD4 cells mainly exert the GVL effect against CML. Efficient activation of allogeneic CD4 cells, as well as CD8 cells, may explain the sensitivity of CML cells to elimination by allogeneic T cells. Identification of the antigens recognized by CD4 cells is crucial in understanding the mechanism through which CML cells are so successful in activating allogeneic T cells. In the present report, we describe the characterization of an allogeneic CD4 T-cell clone, DDII.4.4. This clone was found to react against an antigen that is specifically expressed in myeloid cells, including CD34+ CML cells. The antigen recognition is restricted by HLA-DRB1*16. To our knowledge, this is only the second report on an allogeneic CD4 T-cell clone that reacts with early CD34+ myeloid progenitor cell

    Development and application of quantitative real time PCR and RT-PCR assays that discriminate between the full-length and truncated herpes simplex virus thymidine kinase gene

    No full text
    Allogeneic donor T lymphocytes manipulated genetically to express the herpes simplex virus thymidine kinase (HSV-TK) gene have emerged as promising tools to alter the balance between graft versus host disease and graft versus leukemia after allogeneic stem cell transplantation, since they can be eliminated selectively in vivo with ganciclovir. Recently, it was reported that in SFCMM-3, an HSV-TK-encoding retroviral vector, two cryptic splice sites in the HSV-TK sequence led to the generation of an HSV-TK splice variant (deltaHSV-TK) that encodes a ganciclovir-resistant gene product. In order to quantify wtHSV-TK and deltaHSV-TK RNA levels we have developed two real time Taqman PCR assays. We demonstrate that the sensitivity of both PCR assays is 10(-4). It was found that the splice variant is generated in the packaging cell line and results in approximately 4.8+/-1.9% of virions that contain deltaHSV-TK RNA. After transduction of human T cells no significant increase in deltaHSV-TK RNA could be detected. Thus, at maximum 4.2+/-1.2% of T cells transduced with SFCMM-3 will be resistant to ganciclovir due to this mechanism only. Together, these assays provide a powerful method to monitor patients in future clinical trial

    Untouched GMP-ready purified engineered immune cells to treat cancer

    No full text
    Purpose: Engineering T cells with receptors to redirect the immune system against cancer has most recently been described as a scientific breakthrough. However, a main challenge remains the GMP-grade purification of immune cells selectively expressing the introduced receptor in order to reduce potential side effects due to poorly or nonengineered cells. Experimental Design: In order to test a novel purification strategy, we took advantage of a model Ī³Ī“T cell receptor (TCR), naturally interfering with endogenous TCR expression and designed the optimal retroviral expression cassette to achieve maximal interference with endogenous TCR chains. Following retroviral transduction, nonengineered and poorly engineered immune cells characterized by a high endogenous Ī±Ī²TCR expression were efficiently depleted with GMP-grade anti-Ī±Ī²TCR beads. Next, the engineered immune cells were validated for TCR expression, function against a panel of tumor cell lines and primary tumors and potential allo-reactivity. Engineered immune cells were further validated in two humanized mouse tumor models. Results: The untouched enrichment of engineered immune cells translated into highly purified receptor-engineered cells with strong antitumor reactivity both in vitro and in vivo. Importantly, this approach eliminated residual allo-reactivity of engineered immune cells. Our data demonstrate that even with long-term suboptimal interference with endogenous TCR chains such as in resting cells, allo-reactivity remained absent and tumor control preserved. Conclusions: We present a novel enrichment method for the production of untouched engineered immune cells, ready to be translated into a GMP-grade method and potentially applicable to all receptor-modified cells even if interference with endogenous TCR chains is far from complete

    The impact of antidiabetic treatment on human hypothalamic infundibular neurons and microglia

    Get PDF
    Animal studies indicate that hypothalamic dysfunction plays a major role in type 2 diabetes mellitus (T2DM) development, and that insulin resistance and inflammation are important mechanisms involved in this disorder. However, it remains unclear how T2DM and antidiabetic treatments affect the human hypothalamus. Here, we characterized the proopiomelanocortin (POMC) immunoreactive (-ir) neurons, the neuropeptide-Y-ir (NPY-ir) neurons, the ionized calcium-binding adapter molecule 1-ir (iba1-ir) microglia, and the transmembrane protein 119-ir (TMEM119-ir) microglia in the infundibular nucleus (IFN) of human postmortem hypothalamus of 32 T2DM subjects with different antidiabetic treatments and 17 matched nondiabetic control subjects. Compared with matched control subjects, T2DM subjects showed a decrease in the number of POMC-ir neurons, but no changes in NPY-ir neurons or microglia. Interestingly, T2DM subjects treated with the antidiabetic drug metformin had fewer NPY-ir neurons and microglia than T2DM subjects not treated with metformin. We found that the number of microglia correlated with the number of NPY-ir neurons, but only in T2DM subjects. These results indicate that different changes in POMC and NPY neurons and microglial cells in the IFN accompany T2DM. In addition, T2DM treatment modality is associated with highly selective changes in hypothalamic neurons and microglial cells
    corecore