2 research outputs found

    Cinnamyl Isobutyrate Decreases Plasma Glucose Levels and Total Energy Intake from a Standardized Breakfast: A Randomized, Crossover Intervention

    No full text
    Scope: Cinnamon is associated with anti‐obesity effects, regulating food intake, improving plasma glucose levels and lipid profiles in vivo. In the present study, the impact of cinnamyl isobutyrate (CIB), one constituent of cinnamon, on ad libitum food intake from a standardized breakfast and outcome measures of hormonal regulation of appetite were investigated. Methods and results: In this randomized, short‐term crossover intervention study, a 75 g per 300 mL glucose solution solely (control) or supplemented with 0.45 mg CIB was administered to 26 healthy volunteers. Prior to and 2 h after receiving control or CIB treatment, subjective hunger perceptions were rated using a visual analog scale. Food intake from a standardized breakfast was assessed 2 h after treatments. Plasma peptide YY3–36, glucagon‐like‐peptide1, ghrelin, and serotonin as well as plasma glucose and insulin were measured in blood samples drawn at fasting and 15, 30, 60, 90, and 120 min after treatment. CIB administration decreased total energy intake and delta area under curve plasma glucose by 4.64 ± 3.51% and 49.3 ± 18.5% compared to control treatment, respectively. Conclusions: CIB, administered at a 0.45 mg bolus in 75 g glucose–water solution, decreased ad libitum energy intake from a standardized breakfast and postprandial plasma glucose levels.© 2018 The Author

    High-Efficiency Reverse (5′→3′) Synthesis of Complex DNA Microarrays

    No full text
    DNA microarrays are important analytical tools in genetics and have recently found multiple new biotechnological roles in applications requiring free 3′ terminal hydroxyl groups, particularly as a starting point for enzymatic extension via DNA or RNA polymerases. Here we demonstrate the highly efficient reverse synthesis of complex DNA arrays using a photolithographic approach. The method is analogous to conventional solid phase synthesis but makes use of phosphoramidites with the benzoyl-2-(2-nitrophenyl)-propoxycarbonyl (BzNPPOC) photolabile protecting group on the 3′-hydroxyl group. The use of BzNPPOC, with more than twice the photolytic efficiency of the 2-(2-nitrophenyl)-propoxycarbonyl (NPPOC) previously used for 5′→3′ synthesis, combined with additional optimizations to the coupling and oxidation reactions results in an approximately 3-fold improvement in the reverse synthesis efficiency of complex arrays of DNA oligonucleotides. The coupling efficiencies of the reverse phosphoramidites are as good as those of regular phosphoramidites, resulting in comparable yields. Microarrays of DNA surface tethered on the 5′ end and with free 3′ hydroxyl termini can be synthesized quickly and with similarly high stepwise coupling efficiency as microarrays using conventional 3′→5′ synthesis.© The Author(s) 201
    corecore