3,281 research outputs found

    The detection of lubricating oil viscosity changes in gearbox transmission systems driven by sensorless variable speed drives using electrical supply parameters

    Get PDF
    Lubrication oil plays a decisive role to maintain a reliable and efficient operation of gear transmissions. Many offline methods have been developed to monitor the quality of lubricating oils. This work focus on developing a novel online method to diagnose oil degradation based on the measurements from power supply system to the gearbox. Experimental studies based on an 10kW industrial gearbox fed by a sensorless variable speed drive (VSD) shows that measurable changes in both static power and dynamic behaviour are different with lube oils tested. Therefore, it is feasible to use the static power feature to indicate viscosity changes at low and moderate operating speeds. In the meantime, the dynamic feature can separate viscosity changes for all different tested cases

    Imaging stress and magnetism at high pressures using a nanoscale quantum sensor

    Get PDF
    Pressure alters the physical, chemical and electronic properties of matter. The development of the diamond anvil cell (DAC) enables tabletop experiments to investigate a diverse landscape of high-pressure phenomena ranging from the properties of planetary interiors to transitions between quantum mechanical phases. In this work, we introduce and utilize a novel nanoscale sensing platform, which integrates nitrogen-vacancy (NV) color centers directly into the culet (tip) of diamond anvils. We demonstrate the versatility of this platform by performing diffraction-limited imaging (~600 nm) of both stress fields and magnetism, up to pressures ~30 GPa and for temperatures ranging from 25-340 K. For the former, we quantify all six (normal and shear) stress components with accuracy <0.01<0.01 GPa, offering unique new capabilities for characterizing the strength and effective viscosity of solids and fluids under pressure. For the latter, we demonstrate vector magnetic field imaging with dipole accuracy <10−11<10^{-11} emu, enabling us to measure the pressure-driven α↔ϔ\alpha\leftrightarrow\epsilon phase transition in iron as well as the complex pressure-temperature phase diagram of gadolinium. In addition to DC vector magnetometry, we highlight a complementary NV-sensing modality using T1 noise spectroscopy; crucially, this demonstrates our ability to characterize phase transitions even in the absence of static magnetic signatures. By integrating an atomic-scale sensor directly into DACs, our platform enables the in situ imaging of elastic, electric and magnetic phenomena at high pressures.Comment: 18 + 50 pages, 4 + 19 figure

    ARC‐1, a sequence element complementary to an internal 18S rRNA segment, enhances translation efficiency in plants when present in the leader or intercistronic region of mRNAs

    Get PDF
    The sequences of different plant viral leaders with known translation enhancer ability show partial complementarity to the central region of 18S rRNA. Such complementarity might serve as a means to attract 40S ribosomal subunits and explain in part the translation‐enhancing property of these sequences. To verify this notion, we designed ÎČ‐glucuronidase (GUS) mRNAs differing only in the nature of 10 nt inserts in the center of their 41 base leaders. These were complementary to consecutive domains of plant 18S rRNA. Sucrose gradient analysis revealed that leaders with inserts complementary to regions 1105-1114 and 1115-1124 (‘ARC‐1') of plant 18S rRNA bound most efficiently to the 40S ribosomal subunit after dissociation from 80S ribosomes under conditions of high ionic strength, a treatment known to remove translation initiation factors. Using wheat germ cell‐free extracts, we could demonstrate that mRNAs with these leaders were translated more than three times more efficiently than a control lacking such a complementarity. Three linked copies of the insert enhanced translation of reporter mRNA to levels comparable with those directed by the natural translation enhancing leaders of tobacco mosaic virus and potato virus Y RNAs. Moreover, inserting the same leaders as intercistronic sequences in dicistronic mRNAs substantially increased translation of the second cistron, thereby revealing internal ribosome entry site activity. Thus, for plant systems, the complementary interaction between mRNA leader and the central region of 18S rRNA allows cap‐independent binding of mRNA to the 43S pre‐initiation complex without assistance of translation initiation factor

    Comparison of Surface Area across the Allograft-Host Junction Site Using Conventional and Navigated Osteotomy Technique.

    Get PDF
    Bulk allograft reconstruction plays an important role in limb-salvage surgery; however, non-union has been reported in up to 27% of cases. The purpose of this study is to quantify average surface contact areas across simulated intraoperative osteotomies using both free-hand and computer-assisted navigation techniques. Pressure-sensitive paper was positioned between two cut ends of a validated composite sawbone and compression was applied using an eight-hole large fragment dynamic compression plate. Thirty-two samples were analyzed for surface area contact to determine osteotomy congruity. Mean contact area using the free-hand osteotomy technique was equal to 0.21 square inches. Compared with a control of 0.69 square inches, average contact area was found to be 30.5% of optimal surface contact. Mean contact area using computer-assisted navigation was equal to 0.33 square inches. Compared with a control of 0.76 square inches, average contact area was found to be 43.7% of optimal surface contact. Limited contact achieved using standard techniques may play a role in the high rate of observed non-union, and an increase in contact area using computer-assisted navigation may improve rates of bone healing. The development of an oncology software package and navigation hardware may serve an important role in decreasing non-union rates in limb salvage surgery

    Status of the Frankfurt 14 GHz-ECRIS-(ve)RFQ Facility

    Get PDF
    The accelerator facility installed at the Institut fuer Kernphysik (IKF) combines a 14 GHz electron cyclotron resonance ion source (ECRIS) and a variable energy radio frequency quadrupole accelerator (ve-RFQ)[1,2]. The provided highly charged ions have an energy range between a few keV - using the beam delivered from the source - up to 200 keV/u by using the post acceleration of the ve-RFQ. The setup is designed to deliver a wide spectrum of ions in sufficiently high charged states for atomic physics and materials research. Besides this the ion source is used for studies of the production of highly charged ions with the intention to improve quality and intensity of ion beams. In addition to these activities there are some special topics which deal with the investigation of phenomena on the ECRIS plasma and the production of metal ions by laser ablation technique (see also contributions to this workshop S. Runkel et al. And V. Mironov et. al). The present status and further activities of the facility and a view of the different projects will be reported

    Time Resolved Experiments at the Frankfurt 14 GHz ECR Ion Source

    Get PDF
    To investigate the basic production processes of highly charged ions and combined phenomena of an ECRIS plasma (e. g. influence of secondary electrons and plasma instabilities) time resolved experiments have been carried out at the Frankfurt 14 GHz ECRIS [1] (see also the contributions to this workshop by O. Hohn et al. and V. Mironov et al.). We report time resolved measurements of the extracted ion currents by pulsing the biased disk voltage [2]. The measurements have shown that the extracted ion currents respond too fast to explain the "biased disk effect" (i. e. the intensity increase of highly charged ions) by enhanced ion breeding. Furthermore the influence of the pulsed biased disk on plasma instabilities has been investigated. It has also been shown that this method can be used to extract pulsed ion beams from an ECRIS

    Influence of damping on the excitation of the double giant resonance

    Get PDF
    We study the effect of the spreading widths on the excitation probabilities of the double giant dipole resonance. We solve the coupled-channels equations for the excitation of the giant dipole resonance and the double giant dipole resonance. Taking Pb+Pb collisions as example, we study the resulting effect on the excitation amplitudes, and cross sections as a function of the width of the states and of the bombarding energy.Comment: 8 pages, 3 figures, corrected typo

    Energy-time entanglement from a resonantly driven quantum dot three-level system

    Full text link
    Entanglement is a major resource in advanced quantum technology, where it can enable secure exchange of information over large distances. Energy-time entanglement is particularly attractive for its beneficial robustness in fiber-based quantum communication and can be demonstrated in the Franson interferometer. We report on Franson-type interference from a resonantly driven biexciton cascade under continuous wave excitation. Our measurements yield a maximum visibility of (73 ±\pm 2)% surpassing the limit of violation of Bell's inequality (70.7%) by more than one standard deviation. Despite being unable to satisfy a loophole free violation, our work demonstrates promising results concerning future works on such a system. Furthermore, our systematical studies on the impact of driving strength indicate that dephasing mechanisms and deviations from the cascaded emission have major impact on the degree of the measured energy-time entanglement
    • 

    corecore