182 research outputs found
Force-Free Gravitational Redshift: Proposed Gravitational Aharonov-Bohm experiment
We propose a feasible laboratory interferometry experiment with matter waves
in a gravitational potential caused by a pair of artificial field-generating
masses. It will demonstrate that the presence of these masses (and, for moving
atoms, time dilation) induces a phase shift, even if it does not cause any
classical force. The phase shift is identical to that produced by the
gravitational redshift (or time dilation) of clocks ticking at the atom's
Compton frequency. In analogy to the Aharonov-Bohm effect in electromagnetism,
the quantum mechanical phase is a function of the gravitational potential and
not the classical forces.Comment: Updated to published versio
Atom Interferometers and the Gravitational Redshift
From the principle of equivalence, Einstein predicted that clocks slow down
in a gravitational field. Since the general theory of relativity is based on
the principle of equivalence, it is essential to test this prediction
accurately. Muller, Peters and Chu claim that a reinterpretation of decade old
experiments with atom interferometers leads to a sensitive test of this
gravitational redshift effect at the Compton frequency. Wolf et al dispute this
claim and adduce arguments against it. In this article, we distill these
arguments to a single fundamental objection: an atom is NOT a clock ticking at
the Compton frequency. We conclude that atom interferometry experiments
conducted to date do not yield such sensitive tests of the gravitational
redshift. Finally, we suggest a new interferometric experiment to measure the
gravitational redshift, which realises a quantum version of the classical clock
"paradox".Comment: 18 pages, one figure, improved discussion, corrected typo
Phases and relativity in atomic gravimetry
The phase observable measured by an atomic gravimeter built up on stimulated
Raman transitions is discussed in a fully relativistic context. It is written
in terms of laser phases which are invariant under relativistic gauge
transformations. The dephasing is the sum of light and atomic contributions
which are connected to one another through their interplay with conservation
laws at the interaction vertices. In the case of a closed geometry, a compact
form of the dephasing is written in terms of a Legendre transform of the laser
phases. These general expressions are illustrated by discussing two techniques
used for compensating the Doppler shift, one corresponding to chirped
frequencies and the other one to ramped variations.Comment: 7 pages, 1 figur
CPT and Lorentz-invariance violation
The largest gap in our understanding of nature at the fundamental level is
perhaps a unified description of gravity and quantum theory. Although there are
currently a variety of theoretical approaches to this question, experimental
research in this field is inhibited by the expected Planck-scale suppression of
quantum-gravity effects. However, the breakdown of spacetime symmetries has
recently been identified as a promising signal in this context: a number of
models for underlying physics can accommodate minuscule Lorentz and CPT
violation, and such effects are amenable to ultrahigh-precision tests. This
presentation will give an overview of the subject. Topics such as motivations,
the SME test framework, mechanisms for relativity breakdown, and experimental
tests will be reviewed. Emphasis is given to observations involving antimatter.Comment: 6 page
On the influence of a Coulomb-like potential induced by the Lorentz symmetry breaking effects on the Harmonic Oscillator
In this work, we obtain bound states for a nonrelativistic spin-half neutral
particle under the influence of a Coulomb-like potential induced by the Lorentz
symmetry breaking effects. We present a new possible scenario of studying the
Lorentz symmetry breaking effects on a nonrelativistic quantum system defined
by a fixed space-like vector field parallel to the radial direction interacting
with a uniform magnetic field along the z-axis. Furthermore, we also discuss
the influence of a Coulomb-like potential induced by Lorentz symmetry violation
effects on the two-dimensional harmonic oscillator.Comment: 14 pages, no figure, this work has been accepted for publication in
The European Physical Journal Plu
A Gravitational Aharonov-Bohm Effect, and its Connection to Parametric Oscillators and Gravitational Radiation
A thought experiment is proposed to demonstrate the existence of a
gravitational, vector Aharonov-Bohm effect. A connection is made between the
gravitational, vector Aharonov-Bohm effect and the principle of local gauge
invariance for nonrelativistic quantum matter interacting with weak
gravitational fields. The compensating vector fields that are necessitated by
this local gauge principle are shown to be incorporated by the DeWitt minimal
coupling rule. The nonrelativistic Hamiltonian for weak, time-independent
fields interacting with quantum matter is then extended to time-dependent
fields, and applied to problem of the interaction of radiation with
macroscopically coherent quantum systems, including the problem of
gravitational radiation interacting with superconductors. But first we examine
the interaction of EM radiation with superconductors in a parametric oscillator
consisting of a superconducting wire placed at the center of a high Q
superconducting cavity driven by pump microwaves. We find that the threshold
for parametric oscillation for EM microwave generation is much lower for the
separated configuration than the unseparated one, which then leads to an
observable dynamical Casimir effect. We speculate that a separated parametric
oscillator for generating coherent GR microwaves could also be built.Comment: 25 pages, 5 figures, YA80 conference (Chapman University, 2012
Consistency analysis of a nonbirefringent Lorentz-violating planar model
In this work analyze the physical consistency of a nonbirefringent
Lorentz-violating planar model via the analysis of the pole structure of its
Feynman propagators. The nonbirefringent planar model, obtained from the
dimensional reduction of the CPT-even gauge sector of the standard model
extension, is composed of a gauge and a scalar fields, being affected by
Lorentz-violating (LIV) coefficients encoded in the symmetric tensor
. The propagator of the gauge field is explicitly evaluated
and expressed in terms of linear independent symmetric tensors, presenting only
one physical mode. The same holds for the scalar propagator. A consistency
analysis is performed based on the poles of the propagators. The isotropic
parity-even sector is stable, causal and unitary mode for .
On the other hand, the anisotropic sector is stable and unitary but in general
noncausal. Finally, it is shown that this planar model interacting with a
Higgs field supports compactlike vortex configurations.Comment: 11 pages, revtex style, final revised versio
- …