182 research outputs found

    Force-Free Gravitational Redshift: Proposed Gravitational Aharonov-Bohm experiment

    Full text link
    We propose a feasible laboratory interferometry experiment with matter waves in a gravitational potential caused by a pair of artificial field-generating masses. It will demonstrate that the presence of these masses (and, for moving atoms, time dilation) induces a phase shift, even if it does not cause any classical force. The phase shift is identical to that produced by the gravitational redshift (or time dilation) of clocks ticking at the atom's Compton frequency. In analogy to the Aharonov-Bohm effect in electromagnetism, the quantum mechanical phase is a function of the gravitational potential and not the classical forces.Comment: Updated to published versio

    Atom Interferometers and the Gravitational Redshift

    Full text link
    From the principle of equivalence, Einstein predicted that clocks slow down in a gravitational field. Since the general theory of relativity is based on the principle of equivalence, it is essential to test this prediction accurately. Muller, Peters and Chu claim that a reinterpretation of decade old experiments with atom interferometers leads to a sensitive test of this gravitational redshift effect at the Compton frequency. Wolf et al dispute this claim and adduce arguments against it. In this article, we distill these arguments to a single fundamental objection: an atom is NOT a clock ticking at the Compton frequency. We conclude that atom interferometry experiments conducted to date do not yield such sensitive tests of the gravitational redshift. Finally, we suggest a new interferometric experiment to measure the gravitational redshift, which realises a quantum version of the classical clock "paradox".Comment: 18 pages, one figure, improved discussion, corrected typo

    Phases and relativity in atomic gravimetry

    Full text link
    The phase observable measured by an atomic gravimeter built up on stimulated Raman transitions is discussed in a fully relativistic context. It is written in terms of laser phases which are invariant under relativistic gauge transformations. The dephasing is the sum of light and atomic contributions which are connected to one another through their interplay with conservation laws at the interaction vertices. In the case of a closed geometry, a compact form of the dephasing is written in terms of a Legendre transform of the laser phases. These general expressions are illustrated by discussing two techniques used for compensating the Doppler shift, one corresponding to chirped frequencies and the other one to ramped variations.Comment: 7 pages, 1 figur

    CPT and Lorentz-invariance violation

    Full text link
    The largest gap in our understanding of nature at the fundamental level is perhaps a unified description of gravity and quantum theory. Although there are currently a variety of theoretical approaches to this question, experimental research in this field is inhibited by the expected Planck-scale suppression of quantum-gravity effects. However, the breakdown of spacetime symmetries has recently been identified as a promising signal in this context: a number of models for underlying physics can accommodate minuscule Lorentz and CPT violation, and such effects are amenable to ultrahigh-precision tests. This presentation will give an overview of the subject. Topics such as motivations, the SME test framework, mechanisms for relativity breakdown, and experimental tests will be reviewed. Emphasis is given to observations involving antimatter.Comment: 6 page

    On the influence of a Coulomb-like potential induced by the Lorentz symmetry breaking effects on the Harmonic Oscillator

    Full text link
    In this work, we obtain bound states for a nonrelativistic spin-half neutral particle under the influence of a Coulomb-like potential induced by the Lorentz symmetry breaking effects. We present a new possible scenario of studying the Lorentz symmetry breaking effects on a nonrelativistic quantum system defined by a fixed space-like vector field parallel to the radial direction interacting with a uniform magnetic field along the z-axis. Furthermore, we also discuss the influence of a Coulomb-like potential induced by Lorentz symmetry violation effects on the two-dimensional harmonic oscillator.Comment: 14 pages, no figure, this work has been accepted for publication in The European Physical Journal Plu

    A Gravitational Aharonov-Bohm Effect, and its Connection to Parametric Oscillators and Gravitational Radiation

    Full text link
    A thought experiment is proposed to demonstrate the existence of a gravitational, vector Aharonov-Bohm effect. A connection is made between the gravitational, vector Aharonov-Bohm effect and the principle of local gauge invariance for nonrelativistic quantum matter interacting with weak gravitational fields. The compensating vector fields that are necessitated by this local gauge principle are shown to be incorporated by the DeWitt minimal coupling rule. The nonrelativistic Hamiltonian for weak, time-independent fields interacting with quantum matter is then extended to time-dependent fields, and applied to problem of the interaction of radiation with macroscopically coherent quantum systems, including the problem of gravitational radiation interacting with superconductors. But first we examine the interaction of EM radiation with superconductors in a parametric oscillator consisting of a superconducting wire placed at the center of a high Q superconducting cavity driven by pump microwaves. We find that the threshold for parametric oscillation for EM microwave generation is much lower for the separated configuration than the unseparated one, which then leads to an observable dynamical Casimir effect. We speculate that a separated parametric oscillator for generating coherent GR microwaves could also be built.Comment: 25 pages, 5 figures, YA80 conference (Chapman University, 2012

    Consistency analysis of a nonbirefringent Lorentz-violating planar model

    Full text link
    In this work analyze the physical consistency of a nonbirefringent Lorentz-violating planar model via the analysis of the pole structure of its Feynman propagators. The nonbirefringent planar model, obtained from the dimensional reduction of the CPT-even gauge sector of the standard model extension, is composed of a gauge and a scalar fields, being affected by Lorentz-violating (LIV) coefficients encoded in the symmetric tensor κμν\kappa_{\mu\nu}. The propagator of the gauge field is explicitly evaluated and expressed in terms of linear independent symmetric tensors, presenting only one physical mode. The same holds for the scalar propagator. A consistency analysis is performed based on the poles of the propagators. The isotropic parity-even sector is stable, causal and unitary mode for 0κ00<10\leq\kappa_{00}<1. On the other hand, the anisotropic sector is stable and unitary but in general noncausal. Finally, it is shown that this planar model interacting with a λφ4\lambda|\varphi|^{4}-Higgs field supports compactlike vortex configurations.Comment: 11 pages, revtex style, final revised versio
    corecore