2 research outputs found

    Preconditioning of Bioactive Glasses before Introduction to Static Cell Culture: What Is Really Necessary?

    Get PDF
    Due to their high bioreactivity, the in-vitro analysis of bioactive glasses (BGs) can be challenging when it comes to maintaining a physiological pH. To improve BG biocompatibility, a heterogenic spectrum of preconditioning approaches, such as “passivation” of the BGs by incubation in cell culture medium, are used but have never been directly compared. In this study, the effect of passivation periods of up to 72 h on pH alkalization and viability of human bone marrow-derived mesenchymal stromal cells was evaluated to determine a time-efficient passivation protocol using granules based on the 45S5-BG composition (in wt%: 45.0 SiO2, 24.5 Na2O, 24.5 CaO, 6.0 P2O5) in different concentrations. pH alkalization was most reduced after passivation of 24 h. Cell viability continuously improved with increasing passivation time being significantly higher after passivation of at least 24 h compared to non-passivated 45S5-BG and the necessary passivation time increased with increasing BG concentrations. In this setting, a passivation period of 24 h presented as an effective approach to provide a biocompatible cell culture setting. In conclusion, before introduction of BGs in cell culture, different passivation periods should be evaluated in order to meet the respective experimental settings, e.g., by following the experimental protocols used in this study

    An In Vitro Evaluation of the Biological and Osteogenic Properties of Magnesium-Doped Bioactive Glasses for Application in Bone Tissue Engineering

    No full text
    Magnesium (Mg2+) is known to play a crucial role in mineral and matrix metabolism of bone tissue and is thus increasingly considered in the field of bone tissue engineering. Bioactive glasses (BGs) offer the promising possibility of the incorporation and local delivery of therapeutically active ions as Mg2+. In this study, two Mg2+-doped derivatives of the ICIE16-BG composition (49.46 SiO2, 36.27 CaO, 6.6 Na2O, 1.07 P2O5, 6.6 K2O (mol%)), namely 6Mg-BG (49.46 SiO2, 30.27 CaO, 6.6 Na2O, 1.07 P2O5, 6.6 K2O, 6.0 MgO (mol%) and 3Mg-BG (49.46 SiO2, 33.27 CaO, 6.6 Na2O, 1.07 P2O5, 6.6 K2O, 3.0 MgO (mol%)) were examined. Their influence on viability, proliferation and osteogenic differentiation of human mesenchymal stromal cells (MSCs) was explored in comparison to the original ICIE16-BG. All BGs showed good biocompatibility. The Mg2+-doped BGs had a positive influence on MSC viability alongside with inhibiting effects on MSC proliferation. A strong induction of osteogenic differentiation markers was observed, with the Mg2+-doped BGs significantly outperforming the ICIE16-BG regarding the expression of genes encoding for protein members of the osseous extracellular matrix (ECM) at certain observation time points. However, an overall Mg2+-induced enhancement of the expression of genes encoding for ECM proteins could not be observed, possibly due to a too moderate Mg2+ release. By adaption of the Mg2+ release from BGs, an even stronger impact on the expression of genes encoding for ECM proteins might be achieved. Furthermore, other BG-types such as mesoporous BGs might provide a higher local presence of the therapeutically active ions and should therefore be considered for upcoming studies
    corecore