5 research outputs found

    Nasopharyngeal Haemophilus influenzae Carriage in Japanese Children Attending Day-Care Centersâ–¿

    No full text
    We conducted a prospective bacteriological survey to investigate antibiotic resistance-related genetic characteristics and the turnover of nasopharyngeal Haemophilus influenzae carriage in healthy children in day-care centers (DCCs). A total of 363 nasopharyngeal mucus samples were collected from children aged 0 to 6 years attending two DCCs in the summer of 2004 (n = 184) and the following winter (n = 179). We obtained 172 H. influenzae isolates and analyzed them by antimicrobial susceptibility testing, PCR for blaTEM-1 and the penicillin-binding protein (PBP) gene, and pulsed-field gel electrophoresis (PFGE). The overall carriage rate was 47.4% (172/363), and 37.2% of the isolates (64/172) were ampicillin (AMP) resistant. All the resistant isolates had a PBP mutation(s), while only three isolates had TEM-1. The carriage rate was significantly higher in the winter than in the summer (56.4% and 38.6%, respectively), owing to the increase in the numbers of AMP-susceptible H. influenzae isolates in the winter. Children aged ≤3 years showed a higher rate of carriage of H. influenzae isolates with an AMP resistance gene(s) than those aged ≥4 years (21.9% and 12.6%, respectively). Forty-two strains with different PFGE patterns were obtained from among the 172 isolates. Only five strains were observed in both seasons. None of the strains isolated in the summer was isolated from the same carrier in the winter. Twenty-seven strains (64.3%) were isolated from two or more children, and 25 of these were each isolated from children belonging to the same DCC. These results indicate the spread of H. influenzae, particularly those with a PBP mutation(s), and the highly vigorous genetic turnover and substantial horizontal transmission of this pathogen in healthy children attending DCCs in Japan

    Identification of Pannexins in Rat Nasal Mucosa

    No full text
    Pannexins are a second family of gap-junction proteins in vertebrates, classified as pannexin-1, pannexin-2, and pannexin-3. Pannexin-1 is one of the candidates for channel-mediated ATP release into the extracellular space. In airway epithelia, ATP signaling modulates multiple cellular functions such as mucus/ion secretion and mucociliary clearance systems. However, the expression of pannexins in the upper airway has not been investigated. Nasal septal mucosae were collected from adult male Wistar rats aged 20–24 weeks. The expression of pannexin-1, pannexin-2, and pannexin-3 was examined by reverse transcription polymerase chain reaction (RT-PCR) and by whole-mount fluorescence immunohistochemistry. Transcripts for pannexin-1, pannexin-2, and pannexin-3 were detected in nasal septal mucosae of adult rats by RT-PCR. Distinct immunohistochemical fluorescence for pannexin-1 was observed in the epithelial layer, whereas there was no immunoreactivity for pannexin-2 or pannexin-3. This is the first article establishing the existence of pannexins (predominantly pannexin-1) in the upper airway, suggesting their possible participation in the physiological functions of ATP release and signaling in this tissue
    corecore