232 research outputs found
Recommended from our members
Speciated measurements of semivolatile and intermediate volatility organic compounds (S/IVOCs) in a pine forest during BEACHON-RoMBAS 2011
Understanding organic composition of gases and particles is essential to identifying sources and atmospheric processing leading to organic aerosols (OA), but atmospheric chemical complexity and the analytical techniques available often limit such analysis. Here we present speciated measurements of semivolatile and intermediate volatility organic compounds (S/IVOCs) using a novel dual-use instrument (SV-TAG-AMS) deployed at Manitou Forest, CO, during the Bio-hydro-atmosphere interactions of Energy, Aerosols, Carbon, H_2O, Organics & Nitrogen – Rocky Mountain Biogenic Aerosol Study (BEACHON-RoMBAS) 2011 campaign. This instrument provides on-line speciation of ambient organic compounds with 2 h time resolution. The species in this volatility range are complex in composition, but their chemical identities reveal potential sources. Observed compounds of biogenic origin include sesquiterpenes with molecular formula C_(15)H_(24) (e.g., β-caryophyllene and longifolene), which were most abundant at night. A variety of other biogenic compounds were observed, including sesquiterpenoids with molecular formula C_(15)H_(22), abietatriene and other terpenoid compounds. Many of these compounds have been identified in essential oils and branch enclosure studies but were observed in ambient air for the first time in our study. Semivolatile polycyclic aromatic hydrocarbons (PAHs) and alkanes were observed with highest concentrations during the day and the dependence on temperature suggests the role of an evaporative source. Using statistical analysis by positive matrix factorization (PMF), we classify observed S/IVOCs by their likely sources and processes, and characterize them based on chemical composition. The total mass concentration of elutable S/IVOCs was estimated to be on the order of 0.7 µg m^(−3) and their volatility distributions are estimated for modeling aerosol formation chemistry
Penis deformity after intra-urethral liquid paraffin administration in a young male: a case report
This is an Open Access article distributed under the terms of the Creative Commons Attribution Licens
Development of a multiphase chemical mechanism to improve secondary organic aerosol formation in CAABA/MECCA (version 4.7.0)
During the last few decades, the impact of multiphase chemistry on secondary organic aerosols (SOAs) has been demonstrated to be the key to explaining laboratory experiments and field measurements. However, global atmospheric models still show large biases when simulating atmospheric observations of organic aerosols (OAs). Major reasons for the model errors are the use of simplified chemistry schemes of the gas-phase oxidation of vapours and the parameterization of heterogeneous surface reactions. The photochemical oxidation of anthropogenic and biogenic volatile organic compounds (VOCs) leads to products that either produce new SOA or are taken up by existing aqueous media like cloud droplets and deliquescent aerosols. After partitioning, aqueous-phase processing results in polyols, organosulfates, and other products with a high molar mass and oxygen content. In this work, we introduce the formation of new low-volatility organic compounds (LVOCs) to the multiphase chemistry box model CAABA/MECCA. Most notable are the additions of the SOA precursors, limonene and n-alkanes (5 to 8 C atoms), and a semi-explicit chemical mechanism for the formation of LVOCs from isoprene oxidation in the gas and aqueous phases. Moreover, Henry's law solubility constants and their temperature dependences are estimated for the partitioning of organic molecules to the aqueous phase. Box model simulations indicate that the new chemical scheme predicts the enhanced formation of LVOCs, which are known for being precursor species to SOAs. As expected, the model predicts that LVOCs are positively correlated to temperature but negatively correlated to NOx levels. However, the aqueous-phase processing of isoprene epoxydiols (IEPOX) displays a more complex dependence on these two key variables. Semi-quantitative comparison with observations from the SOAS campaign suggests that the model may overestimate methylbutane-1,2,3,4-tetrol (MeBuTETROL) from IEPOX. Further application of the mechanism in the modelling of two chamber experiments, one in which limonene is consumed by ozone and one in which isoprene is consumed by NO3 shows a sufficient agreement with experimental results within model limitations. The extensions in CAABA/MECCA are transferred to the 3D atmospheric model MESSy for a comprehensive evaluation of the impact of aqueous- and/or aerosol-phase chemistry on SOA at a global scale in a follow-up study.</p
Physicochemical properties of pore residues predict activation gating of CaV1.2: A correlation mutation analysis
Single point mutations in pore-forming S6 segments of calcium channels may transform a high-voltage-activated into a low-voltage-activated channel, and resulting disturbances in calcium entry may cause channelopathies (Hemara-Wahanui et al., Proc Natl Acad Sci U S A 102(21):7553–7558, 16). Here we ask the question how physicochemical properties of amino acid residues in gating-sensitive positions on S6 segments determine the threshold of channel activation of CaV1.2. Leucine in segment IS6 (L434) and a newly identified activation determinant in segment IIIS6 (G1193) were mutated to a variety of amino acids. The induced leftward shifts of the activation curves and decelerated current activation and deactivation suggest a destabilization of the closed and a stabilisation of the open channel state by most mutations. A selection of 17 physicochemical parameters (descriptors) was calculated for these residues and examined for correlation with the shifts of the midpoints of the activation curve (ΔVact). ΔVact correlated with local side-chain flexibility in position L434 (IS6), with the polar accessible surface area of the side chain in position G1193 (IIIS6) and with hydrophobicity in position I781 (IIS6). Combined descriptor analysis for positions I781 and G1193 revealed that additional amino acid properties may contribute to conformational changes during the gating process. The identified physicochemical properties in the analysed gating-sensitive positions (accessible surface area, side-chain flexibility, and hydrophobicity) predict the shifts of the activation curves of CaV1.2
Mutations of the transcription factor PU.1 are not associated with acute lymphoblastic leukaemia
The transcription factor PU.1 plays a crucial role during normal haematopoiesis in both myeloid cells and B-lymphocytes. Mice with a disruption in both alleles of the PU.1 locus were found to lack macrophages and B cells and had delayed appearance of neutrophils. In addition, critical decrease of PU.1 expression is sufficient to cause acute myeloid leukaemia (AML) and lymphomas in mice. Recently, we reported that heterozygous mutations in the PU.1 gene are present in some patients with AML. Thus, we hypothesised that PU.1 mutations might also contribute to the development of acute leukaemias of the B-cell lineage. Here, we screened 62 patients with B-cell acute lymphoblastic leukaemia (B-ALL) at diagnosis for genomic mutations by direct sequencing of all five exons of the PU.1 gene. We found no genomic alteration of the PU.1 gene suggesting that PU.1 mutations are not likely to be common in B-ALL
Reduced BRCA1 expression due to promoter hypermethylation in therapy-related acute myeloid leukaemia
BRCA1 plays a pivotal role in the repair of DNA damage, especially following chemotherapy and ionising radiation. We were interested in the regulation of BRCA1 expression in acute myeloid leukaemia (AML), in particular in therapy-related forms (t-AML). Using real-time PCR and Western blot, we found that BRCA1 mRNA was expressed at barely detectable levels by normal peripheral blood granulocytes, monocytes and lymphocytes, whereas control BM-mononuclear cells and selected CD34+ progenitor cells displayed significantly higher BRCA1 expression (P=0.0003). Acute myeloid leukaemia samples showed heterogeneous BRCA1 mRNA levels, which were lower than those of normal bone marrows (P=0.0001). We found a high frequency of hypermethylation of the BRCA1 promoter region in AML (51/133 samples, 38%), in particular in patients with karyotypic aberrations (P=0.026), and in t-AML, as compared to de novo AML (76 vs 31%, P=0.0002). Examining eight primary tumour samples from hypermethylated t-AML patients, BRCA1 was hypermethylated in three of four breast cancer samples, whereas it was unmethylated in the other four tumours. BRCA1 hypermethylation correlated to reduced BRCA1 mRNA (P=0.0004), and to increased DNA methyltransferase DNMT3A (P=0.003) expression. Our data show that reduced BRCA1 expression owing to promoter hypermethylation is frequent in t-AML and that this could contribute to secondary leukaemogenesis
Familial aggregation of lymphoplasmacytic lymphoma/Waldenström macroglobulinemia with solid tumors and myeloid malignancies.
To access publisher full text version of this article. Please click on the hyperlink in Additional Links field.Lymphoplasmacytic lymphoma (LPL)/Waldenström macroglobulinemia (WM) is a B-cell disorder resulting from the accumulation, predominantly in the bone marrow, of clonally related lymphoplasmacytic cells. LPL/WM is a very rare disease, with an incidence rate of 3-4 cases per million people per year.Currently, the causes of LPL/WM are poorly understood; however, there are emerging data to support a role for immune-related factors in the pathogenesis of LPL/WM. In addition, data show that genetic factors are of importance in the etiology of LPL/WM. In this paper, we will review the current knowledge about familiality of LPL/WM and provide novel data on solid tumors and myeloid malignancies in first-degree relatives of LPL/WM patients.Swedish Cancer Society
Stockholm County Council
Karolinska Institutet Foundations
National Institutes of Health, National Cancer Institute
Roch
Clonal evolution in therapy-related neoplasms
Therapy-related myeloid neoplasms (t-MN) may occur as a late effect of cytotoxic therapy for a primary malignancy or autoimmune diseases in susceptible individuals. We studied the development of somatic mutations in t-MN, using a collection of follow-up samples from 14 patients with a primary hematologic malignancy, who developed a secondary leukemia (13 t-MN and 1 t-acute lymphoblastic leukemia), at a median latency of 73 months (range 18-108) from primary cancer diagnosis.Using Sanger and next generation sequencing (NGS) approaches we identified 8 mutations (IDH1 R132H, ASXL1 Y591*, ASXL1 S689*, ASXL1 R693*, SRSF2 P95H, SF3B1 K700E, SETBP1 G870R and TP53 Y220C) in seven of thirteen t-MN patients (54%), whereas the t-ALL patient had a t(4,11) translocation, resulting in the KMT2A/AFF1 fusion gene. These mutations were then tracked backwards in marrow samples preceding secondary leukemia occurrence, using pyrosequencing and a NGS protocol that allows the detection of low variant allele frequencies ( 650.1%).Somatic mutations were detectable in the BM harvested at the primary diagnosis, prior to any cytotoxic treatment in three patients, while they were not detectable and apparently acquired by the t-MN clone in five patients.These data show that clonal evolution in t-MN is heterogeneous, with some somatic mutations preceding cytotoxic treatment and possibly favoring leukemic development
Association between long-term neuro-toxicities in testicular cancer survivors and polymorphisms in glutathione-s-transferase-P1 and -M1, a retrospective cross sectional study
<p>Abstract</p> <p>Background</p> <p>To assess the impact of polymorphisms in Glutathione S-transferase (GST) -P1, -M1, and -T1 on self-reported chemotherapy-induced long-term toxicities in testicular cancer survivors (TCSs).</p> <p>Methods</p> <p>A total of 238 TCSs, who had received cisplatin-based chemotherapy at median twelve years earlier, had participated in a long-term follow-up survey which assessed the prevalence of self-reported paresthesias in fingers/toes, Raynaud-like phenomena in fingers/toes, tinnitus, and hearing impairment. From all TCSs lymphocyte-derived DNA was analyzed for the functional A→G polymorphism at bp 304 in <it>GSTP1</it>, and deletions in <it>GST-M1 </it>and <it>GST-T1</it>. Evaluation of associations between GST polymorphisms and self-reported toxicities included adjustment for prior treatment.</p> <p>Results</p> <p>All six evaluated toxicities were significantly associated with the cumulative dose of cisplatin and/or bleomycin. Compared to TCSs with either <it>GSTP1-AG </it>or <it>GSTP1</it>-<it>AA</it>, the 37 TCSs with the genotype <it>GSTP1-GG</it>, were significantly less bothered by paresthesias in fingers and toes (p = 0.039, OR 0.46 [0.22–0.96] and p = 0.023, OR 0.42 [0.20–0.88], respectively), and tinnitus (p = 0.008, OR 0.33 [0.14–0.74]). Furthermore, absence of functional GSTM1 protected against hearing impairment (p = 0.025, OR 1.81 [1.08–3.03]).</p> <p>Conclusion</p> <p>In TCSs long-term self-reported chemotherapy-induced toxicities are associated with functional polymorphisms in <it>GSTP1 </it>and <it>GSTM1</it>. Hypothetically, absence of GST-M1 leaves more glutathione as substrate for the co-expressed GST-P1. Also intracellular inactivation of pro-apoptotic mediators represents a possible explanation of our findings. Genotyping of these GSTs might be a welcomed step towards a more individualized treatment of patients with metastatic testicular cancer.</p
Integrating Extrinsic and Intrinsic Cues into a Minimal Model of Lineage Commitment for Hematopoietic Progenitors
Autoregulation of transcription factors and cross-antagonism between lineage-specific transcription factors are a recurrent theme in cell differentiation. An equally prevalent event that is frequently overlooked in lineage commitment models is the upregulation of lineage-specific receptors, often through lineage-specific transcription factors. Here, we use a minimal model that combines cell-extrinsic and cell-intrinsic elements of regulation in order to understand how both instructive and stochastic events can inform cell commitment decisions in hematopoiesis. Our results suggest that cytokine-mediated positive receptor feedback can induce a “switch-like” response to external stimuli during multilineage differentiation by providing robustness to both bipotent and committed states while protecting progenitors from noise-induced differentiation or decommitment. Our model provides support to both the instructive and stochastic theories of commitment: cell fates are ultimately driven by lineage-specific transcription factors, but cytokine signaling can strongly bias lineage commitment by regulating these inherently noisy cell-fate decisions with complex, pertinent behaviors such as ligand-mediated ultrasensitivity and robust multistability. The simulations further suggest that the kinetics of differentiation to a mature cell state can depend on the starting progenitor state as well as on the route of commitment that is chosen. Lastly, our model shows good agreement with lineage-specific receptor expression kinetics from microarray experiments and provides a computational framework that can integrate both classical and alternative commitment paths in hematopoiesis that have been observed experimentally
- …