32 research outputs found

    Development of a phantom to test fully automated breast density software – a work in progress

    Get PDF
    Objectives: Mammographic density (MD) is an independent risk factor for breast cancer and may have a future role for stratified screening. Automated software can estimate MD but the relationship between breast thickness reduction and MD is not fully understood. Our aim is to develop a deformable breast phantom to assess automated density software and the impact of breast thickness reduction on MD. Methods: Several different configurations of poly vinyl alcohol (PVAL) phantoms were created. Three methods were used to estimate their density. Raw image data of mammographic images were processed using Volpara to estimate volumetric breast density (VBD%); Hounsfield units (HU) were measured on CT images; and physical density (g/cm3) was calculated using a formula involving mass and volume. Phantom volume versus contact area and phantom volume versus phantom thickness was compared to values of real breasts. Results: Volpara recognized all deformable phantoms as female breasts. However, reducing the phantom thickness caused a change in phantom density and the phantoms were not able to tolerate same level of compression and thickness reduction experienced by female breasts during mammography. Conclusion: Our results are promising as all phantoms resulted in valid data for automated breast density measurement. Further work should be conducted on PVAL and other materials to produce deformable phantoms that mimic female breast structure and density with the ability of being compressed to the same level as female breasts. Advances in knowledge: We are the first group to have produced deformable phantoms that are recognized as breasts by Volpara software

    Adding tree rings to North America's National Forest Inventories: an essential tool to guide drawdown of atmospheric CO2

    Get PDF
    Tree-ring time series provide long-term, annually resolved information on the growth of trees. When sampled in a systematic context, tree-ring data can be scaled to estimate the forest carbon capture and storage of landscapes, biomes, and-ultimately-the globe. A systematic effort to sample tree rings in national forest inventories would yield unprecedented temporal and spatial resolution of forest carbon dynamics and help resolve key scientific uncertainties, which we highlight in terms of evidence for forest greening (enhanced growth) versus browning (reduced growth, increased mortality). We describe jump-starting a tree-ring collection across the continent of North America, given the commitments of Canada, the United States, and Mexico to visit forest inventory plots, along with existing legacy collections. Failing to do so would be a missed opportunity to help chart an evidence-based path toward meeting national commitments to reduce net greenhouse gas emissions, urgently needed for climate stabilization and repair.Published versio

    The impact of strategic entrepreneurship inside the organization : examining job stress and employee retention

    No full text
    How do managers and staff react to strategic entrepreneurship? How can we minimize resulting job stress and maximize employee retention? We surveyed 1,975 managers and staff in 110 departments of a diversified healthcare organization on department-level entrepreneurial orientation (EO) (e.g., risk taking, proactiveness, and innovativeness), degree of role ambiguity in their job, and their strength of intention to quit. After validating manager and staff reports of EO, we estimated structural equation models for managers and staff. Our results demonstrate that strategic entrepreneurship can impact management and staff differently and thus requires a correspondingly customized design philosophy
    corecore