3 research outputs found

    Mutational Spectrum in the PEX7 Gene and Functional Analysis of Mutant Alleles in 78 Patients with Rhizomelic Chondrodysplasia Punctata Type 1

    Get PDF
    Rhizomelic chondrodysplasia punctata (RCDP) is a genetically heterogeneous, autosomal recessive disorder of peroxisomal metabolism that is clinically characterized by symmetrical shortening of the proximal long bones, cataracts, periarticular calcifications, multiple joint contractures, and psychomotor retardation. Most patients with RCDP have mutations in the PEX7 gene encoding peroxin 7, the cytosolic PTS2-receptor protein required for targeting a subset of enzymes to peroxisomes. These enzymes are deficient in cells of patients with RCDP, because of their mislocalization to the cytoplasm. We report the mutational spectrum in the PEX7 gene of 78 patients (including five pairs of sibs) clinically and biochemically diagnosed with RCDP type I. We found 22 different mutations, including 18 novel ones. Furthermore, we show by functional analysis that disease severity correlates with PEX7 allele activity: expression of eight different alleles from patients with severe RCDP failed to restore the targeting defect in RCDP fibroblasts, whereas two alleles found only in patients with mild disease complemented the targeting defect upon overexpression. Surprisingly, one of the mild alleles comprises a duplication of nucleotides 45–52, which is predicted to lead to a frameshift at codon 17 and an absence of functional peroxin 7. The ability of this allele to complement the targeting defect in RCDP cells suggests that frame restoration occurs, resulting in full-length functional peroxin 7, which leads to amelioration of the predicted severe phenotype. This was confirmed in vitro by expression of the eight-nucleotide duplication–containing sequence fused in different reading frames to the coding sequence of firefly luciferase in COS cells

    Clinical, biochemical, and mutational spectrum of peroxisomal acyl-coenzyme A oxidase deficiency

    No full text
    Peroxisomal acyl-coenzyme A (acyl-CoA) oxidase deficiency is an autosomal recessive inborn error of peroxisomal fatty acid oxidation due to a deficiency of straight-chain acyl-CoA oxidase (SCOX). The biochemical hallmark of this disorder is the accumulation of very long-chain fatty acids. Although some case reports and small series of patients have been published, a comprehensive overview of the clinical, biochemical, and mutational spectrum of this disorder is still lacking. For this reason, we report clinical information for a cohort of 22 patients with peroxisomal acyl-CoA oxidase deficiency and the results from biochemical and mutation analyses in fibroblasts of the patients. No clear genotype-phenotype correlation was observed. An intriguing mutation in the alternatively-spliced transcript encoding the isoform SCOX-exon 3II in a patient with normal expression of the transcript encoding the isoform SCOX-exon 3I, prompted us to characterize these two isoforms of human SCOX. The recombinant SCOX-exon 3I displayed activity toward medium-chain fatty acyl-CoAs and was not active with very long-chain fatty acyl-CoAs. In contrast, recombinant SCOX-exon 3II was capable of oxidizing a broad range of substrates, including very long-chain fatty acyl-CoAs. These results explain why this patient with a mutation in exon 3II of the ACOX1 gene, but with normal expression of exon 3I, was indistinguishable from other patients with peroxisomal acyl-CoA oxidase deficiency with respect to his clinical presentation and the biochemical abnormalities in his fibroblast
    corecore