52 research outputs found

    Grozdovi obojenih s-valnih kvarkova s lomljenjem okusne simetrije

    Get PDF
    We study the properties of coloured three-particle s-wave quark clusters when flavour symmetry is broken. The relevance of such clusters for models of pentaquarks is shortly mentioned.Proučavamo svojstva obojenih tročestičnih s-valnih kvarkovskih grozdova s lomljenjem okusne simetrije. Kratko se spominje važnost tih grozdova za pentakvarkovske modele

    The discovery and properties of pentaquarks

    Full text link
    The pentaquarks are exotic baryons formed of four quarks and an antiquarks. Their existence has been discussed in the literature over the last 30 years or more, first in connection with kaon nucleon scattering data. The subject has been revived by the end of 2002 when experimental evidence of a narrow baryon of strangeness SS = + 1, and mass MM \simeq 1530 MeV has been found. This is interpreted as the lightest member of an SU(3)-flavor antidecuplet. Here we shall mainly review the predictions of pentaquark properties as e.g. mass, spin and parity, within constituent quark models. Both light and heavy pentaquarks will be presented.Comment: Plenary talk, MESON2004 Conference Proceedings, Crakow, June 4-8 200

    Flavored exotic multibaryons and hypernuclei in topological soliton models

    Full text link
    The energies of baryon states with positive strangeness, or anti-charm (-beauty) are estimated in chiral soliton approach, in the "rigid oscillator" version of the bound state soliton model proposed by Klebanov and Westerberg. Positive strangeness states can appear as relatively narrow nuclear levels (Theta-hypernuclei), the states with heavy anti-flavors can be bound with respect to strong interactions in the original Skyrme variant of the model (SK4 variant). The binding energies of anti-flavored states are estimated also in the variant of the model with 6-th order term in chiral derivatives in the lagrangian as solitons stabilizer (SK6 variant). The latter variant is less attractive, and nuclear states with anti-charm or anti-beauty can be unstable relative to strong interactions. The chances to get bound hypernuclei with heavy antiflavors are greater within "nuclear variant" of the model with rescaled model parameter (Skyrme constant e or e' decreased by ~30%) which is expected to be valid for baryon numbers greater than B ~10. The rational map approximation is used to describe multiskyrmions with baryon number up to ~30 and to calculate the quantities necessary for their quantization (moments of inertia, sigma-term, etc.).Comment: 24 pages, 7 table

    Z^* Resonances: Phenomenology and Models

    Get PDF
    We explore the phenomenology of, and models for, the Z^* resonances, the lowest of which is now well established, and called the Theta. We provide an overview of three models which have been proposed to explain its existence and/or its small width, and point out other relevant predictions, and potential problems, for each. The relation to what is known about KN scattering, including possible resonance signals in other channels, is also discussed.Comment: 29 pages, uses RevTeX4; expanded version (published form

    Spin structure of the nucleon: QCD evolution, lattice results and models

    Full text link
    The question how the spin of the nucleon is distributed among its quark and gluon constituents is still a subject of intense investigations. Lattice QCD has progressed to provide information about spin fractions and orbital angular momentum contributions for up- and down-quarks in the proton, at a typical scale \mu^2~4 GeV^2. On the other hand, chiral quark models have traditionally been used for orientation at low momentum scales. In the comparison of such model calculations with experiment or lattice QCD, fixing the model scale and the treatment of scale evolution are essential. In this paper, we present a refined model calculation and a QCD evolution of lattice results up to next-to-next-to-leading order. We compare this approach with the Myhrer-Thomas scenario for resolving the proton spin puzzle.Comment: 11 pages, 6 figures, equation (9) has been corrected leading to a revised figure 1b. Revision matches published versio

    Moscow-type NN-potentials and three-nucleon bound states

    Get PDF
    A detailed description of Moscow-type (M-type) potential models for the NN interaction is given. The microscopic foundation of these models, which appear as a consequence of the composite quark structure of nucleons, is discussed. M-type models are shown to arise naturally in a coupled channel approach when compound or bag-like six-quark states, strongly coupled to the NN channel, are eliminated from the complete multiquark wave function. The role of the deep-lying bound states that appear in these models is elucidated. By introducing additional conditions of orthogonality to these compound six-quark states, a continuous series of almost on-shell equivalent nonlocal interaction models, characterized by a strong reduction or full absence of a local repulsive core (M-type models), is generated. The predictions of these interaction models for 3N systems are analyzed in detail. It is shown that M-type models give, under certain conditions, a stronger binding of the 3N system than the original phase-equivalent model with nodeless wave functions. An analysis of the 3N system with the new versions of the Moscow NN potential describing also the higher even partial waves is presented. Large deviations from conventional NN force models are found for the momentum distribution in the high momentum region. In particular, the Coulomb displacement energy for nuclei ^3He - ^3H displays a promising agreement with experiment when the ^3H binding energy is extrapolated to the experimental value.Comment: 23 pages Latex, 9 figures, to appear in Phys.Rev.
    corecore