5 research outputs found

    Minimal residual disease assessment by multiparameter flow cytometry in transplant-eligible myeloma in the EMN02/HOVON 95 MM trial

    Get PDF
    Minimal residual disease (MRD) by multiparameter flow cytometry (MFC) is the most effective tool to define a deep response in multiple myeloma (MM). We conducted an MRD correlative study of the EMN02/HO95 MM phase III trial in newly diagnosed MM patients achieving a suspected complete response before maintenance and every 6 months during maintenance. Patients received high-dose melphalan (HDM) versus bortezomib-melphalan-prednisone (VMP) intensification, followed by bortezomib-lenalidomide-dexamethasone (VRd) versus no consolidation, and lenalidomide maintenance. Bone marrow (BM) samples were processed in three European laboratories, applying EuroFlow-based MFC protocols (eight colors, two tubes) with 10−4−10−5 sensitivity. At enrollment in the MRD correlative study, 76% (244/321) of patients were MRD-negative. In the intention-to-treat analysis, after a median follow-up of 75 months, 5-year progression-free survival was 66% in MRD-negative versus 31% in MRD-positive patients (HR 0.39; p < 0.001), 5-year overall survival was 86% versus 69%, respectively (HR 0.41; p < 0.001). MRD negativity was associated with reduced risk of progression or death in all subgroups, including ISS-III (HR 0.37) and high-risk fluorescence in situ hybridization (FISH) patients (HR 0.38;). In t

    Stability and uniqueness of clonal immunoglobulin CDR3 sequences for MRD tracking in multiple myeloma

    No full text
    Minimal residual disease (MRD) tracking, by next generation sequencing of immunoglobulin sequences, is moving towards clinical implementation in multiple myeloma. However, there is only sparse information available to address whether clonal sequences remain stable for tracking over time, and to what extent light chain sequences are sufficiently unique for tracking. Here, we analyzed immunoglobulin repertoires from 905 plasma cell myeloma and healthy control samples, focusing on the third complementarity determining region (CDR3). Clonal heavy and/or light chain expression was identified in all patients at baseline, with one or more subclones related to the main clone in 3.2%. In 45 patients with 101 sequential samples, the dominant clonal CDR3 sequences remained identical over time, despite differential clonal evolution by whole exome sequencing in 49% of patients. The low frequency of subclonal CDR3 variants, and absence of evolution over time in active multiple myeloma, indicates that tumor cells at this stage are not under selective pressure to undergo antibody affinity maturation. Next, we establish somatic hypermutation and non-templated insertions as the most important determinants of light chain clonal uniqueness, identifying a potentially trackable sequence in the majority of patients. Taken together, we show that dominant clonal sequences identified at baseline are reliable biomarkers for long-term tracking of the malignant clone, including both IGH and the majority of light chain clones
    corecore