187 research outputs found

    The SiC Problem: Astronomical and Meteoritic Evidence

    Get PDF
    Presolar grains of silicon carbide, found in meteorites and interpreted as having had an origin around carbon stars from their isotopic composition, have all been found to be of the β-SiC polytype. Yet, to date, fits to the 11.3 μm SiC emission band of carbon stars had been obtained only for α-SiC grains. We present thin-film infrared (IR) absorption spectra that were measured in a diamond-anvil cell for both the α- and β-polymorphs of synthetic SiC, and we compare the results with previously published spectra that were taken using the KBr matrix method. We find that our thin-film spectra have positions nearly identical to those obtained previously from finely ground samples in KBr. Hence, we show that this discrepancy has arisen from inappropriate "KBr corrections" having been made to laboratory spectra of SiC particles dispersed in KBr matrices. We refitted a sample of carbon star mid-IR spectra, using laboratory data with no KBr correction applied, and show that β-SiC grains fitted the observations while α-SiC grains did not. The discrepancy between meteoritic and astronomical identifications of the SiC type is therefore removed. This work shows that the diamond-anvil cell, thin-film method can be used to produce mineral spectra that are applicable to cosmic environments without further manipulation

    Silicon carbide: The problem with laboratory spectra

    Get PDF
    The interpretation of astronomical observations of infrared (IR) silicon carbide (SiC) features in the spectra of carbon stars have revealed discrepancies between the work of astronomers and that of meteoriticists. The silicon carbide observed around carbon stars has been attributed to one type of SiC (α) while meteoritic samples believed to have formed around such stars are of another type of SiC (β). The key to solving this problem has been to understand the sources of laboratory data used by astronomers in order to interpret the IR spectra. Through comparison of thin film IR absorption spectra and spectra taken using finely ground samples dispersed in potassium bromide (KBr) pellets we show that the previously invoked ``KBr matrix-correction'' is unnecessary for powder dispersions obtained from very fine grain sizes of SiC. Comparison of our data and previous measurements show that dust around carbon stars is β-SiC, consistent with laboratory studies of presolar grains in meteorites. The implications of these findings affect twenty years of work. The IR spectroscopic laboratory data used by astronomers to identify dust species in space must be carefully scrutinized to ensure that the KBr correction is not responsible for further misattributions of minerals in astronomical dust features

    Temperature effects on the 15-85 mu m spectra of olivines and pyroxenes

    Get PDF
    Far-infrared spectra of laboratory silicates are normally obtained at room temperature even though the grains responsible for astronomical silicate emission bands seen at wavelengths >20 μm are likely to be at temperatures below ∼150 K. In order to investigate the effect of temperature on silicate spectra, we have obtained absorption spectra of powdered forsterite and olivine, along with two orthoenstatites and diopside clinopyroxene, at 3.5±0.5 K and at room temperature (295±2 K). To determine the changes in the spectra the resolution must be increased from ∼1 to 0.25 cm−1 at both temperatures, because a reduction in temperature reduces the phonon density, thereby reducing the width of the infrared peaks. Several bands observed at 295 K split at 3.5 K. At 3.5 K the widths of isolated single bands in olivine, enstatites and diopside are ∼90 per cent of their 295-K widths. However, in forsterite the 3.5-K widths of the 31-, 49- and 69-μm bands are, respectively, 90, 45 and 31 per cent of their 295-K widths. Owing to an increase in phonon energy as the lattice contracts, 3.5-K singlet peaks occur at shorter wavelengths than do the corresponding 295-K peaks; the magnitude of the wavelength shift increases from ∼0–0.2 μm at 25 μm to ∼0.9 μm at 80 μm. In olivines and enstatites the wavelength shifts can be approximated by polynomials of the form ax+bx2 where x=λpk(295 K) and the coefficients a and b differ between minerals; for diopside this formula gives a lower limit to the shift. Changes in the relative absorbances of spectral peaks are also observed. The temperature dependence of λpk and bandwidth shows promise as a means to deduce characteristic temperatures of mineralogically distinct grain populations. In addition, the observed changes in band strength with temperature will affect estimates of grain masses and relative mineral abundances inferred using room-temperature laboratory data. Spectral measurements of a variety of minerals at a range of temperatures are required to quantify these effects fully

    The 69-mu m forsterite band as a dust temperature indicator

    Get PDF
    A band of pure crystalline forsterite (100 per cent Mg2SiO4) occurs at 69.67 μm at room temperature (295 K); for olivines with ≳10 per cent Fe the corresponding feature is at ≳73 μm. The Mg-rich forsterite feature is observed in a variety of ISO LWS spectra, but the corresponding Fe-rich olivine feature is not. For the 10 astronomical sources in our sample, the forsterite band peaks in the 68.9–69.3 μm range and narrows with decreasing peak wavelength. This is consistent with the shortwards shifting of the peak observed when laboratory samples are cooled to 77 K (69.07 μm) and 3.5 K (68.84 μm). The shifted peak is produced by lattice contraction and the sharpening is due to a decrease in phonon density at lower temperatures. However, the astronomical bands are narrower than those of the laboratory samples. By comparing the laboratory and astronomical peak wavelengths, we deduce characteristic forsterite 69-μm band temperatures that are in the 27–84 K range for the eight post-main-sequence objects in our sample. These values are shown to be consistent with the local continuum temperatures derived using a β=1.5 dust emissivity index, similar to derived interstellar values of the opacity index. For the pre-main sequence-objects HD 100546 and MWC 922, the characteristic 69-μm forsterite band temperatures (127±18 and 139±10 K, respectively) are significantly higher than those of the post-main-sequence objects and are more than twice as high as their local continuum temperatures deduced using β=1.5. The assumption of large grains (β=0) can produce agreement between the derived 69-μm and continuum temperatures for one of these objects but not for the other — a spatial separation between the forsterite and continuum-emitting grains may therefore be implied for it. We conclude that observations of the peak wavelength and FWHM of the 69-μm forsterite band show great promise as a new diagnostic of characteristic grain temperatures

    Analgesic management of an eight-year-old Springer Spaniel after amputation of a thoracic limb

    Get PDF
    Analgesic agents were administered perioperatively to an eight-year-old Springer Spaniel undergoing amputation of its right thoracic limb. The amputation was carried out due to a painful, infiltrative and poorly differentiated sarcoma involving the nerves of the brachial plexus. A combination of pre-emptive and multimodal perioperative analgesic strategies was used; including intravenous (IV) infusions of fentanyl, morphine, lidocaine and ketamine

    Electromagnetic Characteristics of the Soil

    Get PDF
    The electromagnetic characteristics of the soil are discussed in this chapter. The characteristics of porous bedrock, soil medium, and impacts of rain attenuations are also presented. The models of dielectric soil properties are studied with a rigorous focus on the constitutive parameters of subsurface soil medium. Moreover, the permittivity and wavenumber in soil are explained. In addition, the frequency-dependent dielectric properties such as dispersion in soil, absorption characteristic, and penetration depth versus frequency are reviewed. Furthermore, the effective permittivity of soil–water mixture for through-the soil-propagation mechanism is analyzed thoroughly

    HIV infection of thymocytes inhibits IL-7 activity without altering CD127 expression

    Get PDF
    Abstract Background Thymic function is altered in HIV infection and characterized by dysregulation of the thymic epithelial network, reduced thymic output and ultimately an impaired naïve T-cell pool. The IL-7/IL-7 receptor (IL-7R) signalling pathway is critical for the maturation and differentiation of thymocytes. HIV infection is associated with a decrease in IL-7Rα (CD127) expression and impaired CD127 signalling in circulating CD8+ T-cells; however, little is known about the effect of HIV on CD127 expression and IL-7 activity in the thymus. Therefore, the effect of in vitro HIV infection on CD127 expression and IL-7-mediated function in thymocytes was investigated. Findings In vitro HIV infection of thymocytes did not affect CD127 expression on either total thymocytes or on single positive CD4 or single positive CD8 subsets. However, HIV infection resulted in a decrease in the level of IL-7-induced STAT-5 phosphorylation and Bcl-2 expression in unfractionated thymocytes. Conclusion These findings indicate that HIV infection alters IL-7 responsiveness of thymocytes by a mechanism other than CD127 downregulation and potentially explain the disruption in thymopoiesis observed in HIV infection

    The Novel Deacetylase Inhibitor AR-42 Demonstrates Pre-Clinical Activity in B-Cell Malignancies In Vitro and In Vivo

    Get PDF
    While deacetylase (DAC) inhibitors show promise for the treatment of B-cell malignancies, those introduced to date are weak inhibitors of class I and II DACs or potent inhibitors of class I DAC only, and have shown suboptimal activity or unacceptable toxicities. We therefore investigated the novel DAC inhibitor AR-42 to determine its efficacy in B-cell malignancies.In mantle cell lymphoma (JeKo-1), Burkitt's lymphoma (Raji), and acute lymphoblastic leukemia (697) cell lines, the 48-hr IC(50) (50% growth inhibitory concentration) of AR-42 is 0.61 microM or less. In chronic lymphocytic leukemia (CLL) patient cells, the 48-hr LC(50) (concentration lethal to 50%) of AR-42 is 0.76 microM. AR-42 produces dose- and time-dependent acetylation both of histones and tubulin, and induces caspase-dependent apoptosis that is not reduced in the presence of stromal cells. AR-42 also sensitizes CLL cells to TNF-Related Apoptosis Inducing Ligand (TRAIL), potentially through reduction of c-FLIP. AR-42 significantly reduced leukocyte counts and/or prolonged survival in three separate mouse models of B-cell malignancy without evidence of toxicity.Together, these data demonstrate that AR-42 has in vitro and in vivo efficacy at tolerable doses. These results strongly support upcoming phase I testing of AR-42 in B-cell malignancies
    corecore