17,548 research outputs found

    Simulation of interaction Hamiltonians by quantum feedback: a comment on the dynamics of information exchange between coupled systems

    Full text link
    Since quantum feedback is based on classically accessible measurement results, it can provide fundamental insights into the dynamics of quantum systems by making available classical information on the evolution of system properties and on the conditional forces acting on the system. In this paper, the feedback-induced interaction dynamics between a pair of quantum systems is analyzed. It is pointed out that any interaction Hamiltonian can be simulated by local feedback if the levels of decoherence are sufficiently high. The boundary between genuine entanglement generating quantum interactions and non-entangling classical interactions is identified and the nature of the information exchange between two quantum systems during an interaction is discussed.Comment: 14 pages, 4 figures; invited paper for the special issue of J. Opt. B on quantum contro

    Many-body Theory at Extreme Isospin

    Get PDF
    The structure of nuclei far off beta-stability is investigated by nuclear many-body theory. In-medium interactions for asymmetric nuclear matter are obtained by (Dirac-) Brueckner theory thus establishing the link of nuclear forces to free space interactions. HFB and RPA theory is used to describe ground and excited states of nuclei from light to heavy masses. In extreme dripline systems pairing and core polarization are found to be most important for the binding, especially of halo nuclei. The calculations show that far off stability mean-field dynamics is gradually replaced by dynamical correlations, giving rise to the dissolution of shell structures.Comment: 10 pages, 5 figures, to appear in the proceedings of Nuclear Physics at the Borderline, NPBL2001, Lipari, Sicily, Italy, May 2001 (World Scientific

    Optimized phase switching using a single atom nonlinearity

    Full text link
    We show that a nonlinear phase shift of pi can be obtained by using a single two level atom in a one sided cavity with negligible losses. This result implies that the use of a one sided cavity can significantly improve the pi/18 phase shift previously observed by Turchette et al. [Phys. Rev. Lett. 75, 4710 (1995)].Comment: 6 pages, 3 figures, added comments on derivation and assumption

    Evidence for bipolar jets in late stages of AGB winds

    Full text link
    Bipolar expansion at various stages of evolution has been recently observed in a number of AGB stars. The expansion is driven by bipolar jets that emerge late in the evolution of AGB winds. The wind traps the jets, resulting in an expanding, elongated cocoon. Eventually the jets break-out from the confining spherical wind, as recently observed in W43A. This source displays the most advanced evolutionary stage of jets in AGB winds. The earliest example is IRC+10011, where the asymmetry is revealed in high-resolution near-IR imaging. In this source the jets turned on only ~200 years ago, while the spherical wind is ~4000 years old.Comment: 6 pages, to appear in "Asymmetrical Planetary Nebulae III" editors M. Meixner, J. Kastner, N. Soker, & B. Balick (ASP Conf. Series

    The valvula cerebelli of the spiny eel, Macrognathus aculeatus, receives primary lateral-line afferents from the rostrum of the upper jaw

    Get PDF
    In the spiny eel, Macrognathus aculeatus, anterodorsal and (to a lesser degree) anteroventral lateralline nerves project massively to the granular layer of the valvula cerebelli, throughout its rostrocaudal extent. The posterior lateral-line nerve terminates in the corpus cerebelli. Thus, valvula and corpus cerebelli are supplied with mechanosensory input of different peripheral origins. An analysis of the taxonomic distribution of experimentally determined primary lateral-line input to the three parts of the teleostean cerebellum reveals that the eminentia granularis always receives such input, and that the corpus cerebelli is the recipient of primary lateral-line input in many teleosts. The valvula, however, receives primary lateral-line afferents in only two examined species. In M. aculeatus, the massive lateral-line input to the valvula probably originates in mechanoreceptors located in the elongated rostrum of the upper jaw, a characteristic feature of mastacembeloid fishes. This projection to the valvula may therefore represent a unique specialization that arose with the evolution of the peculiar rostrum

    Computing Web-scale Topic Models using an Asynchronous Parameter Server

    Full text link
    Topic models such as Latent Dirichlet Allocation (LDA) have been widely used in information retrieval for tasks ranging from smoothing and feedback methods to tools for exploratory search and discovery. However, classical methods for inferring topic models do not scale up to the massive size of today's publicly available Web-scale data sets. The state-of-the-art approaches rely on custom strategies, implementations and hardware to facilitate their asynchronous, communication-intensive workloads. We present APS-LDA, which integrates state-of-the-art topic modeling with cluster computing frameworks such as Spark using a novel asynchronous parameter server. Advantages of this integration include convenient usage of existing data processing pipelines and eliminating the need for disk writes as data can be kept in memory from start to finish. Our goal is not to outperform highly customized implementations, but to propose a general high-performance topic modeling framework that can easily be used in today's data processing pipelines. We compare APS-LDA to the existing Spark LDA implementations and show that our system can, on a 480-core cluster, process up to 135 times more data and 10 times more topics without sacrificing model quality.Comment: To appear in SIGIR 201

    Spin induced gigahertz polarization oscillations in vertical-cavity surface-emitting laser devices

    Get PDF
    Spin-controlled vertical-cavity surface-emitting lasers (VCSELs) have been intensively studied in recent years because of the low threshold feasibility and the nonlinearity above threshold, which make spin-VCSELs very promising for spintronic devices. Here we investigate the circular polarization dynamics of VCSELs on a picosecond time scale after pulsed optical spin injection at room temperature. A hybrid excitation technique combining continuous-wave (cw) unpolarized electrical excitation slightly above threshold and pulsed polarized optical excitation is applied. The experimental results demonstrate ultrafast circular polarization oscillations with a frequency of about 11 GHz. The oscillations last inside the first undulation of the intensity relaxation oscillations. Via theoretical calculations based on a rate equation model we analyze these oscillations as well as the underlying physical mechanisms

    Ultrafast circular polarization oscillations in spin-polarized vertical-cavity surface-emitting laser devices

    Get PDF
    Spin-polarized lasers offer new encouraging possibilities for future devices. We investigate the polarization dynamics of electrically pumped vertical-cavity surface-emitting lasers after additional spin injection at room temperature. We find that the circular polarization degree exhibits faster dynamics than the emitted light. Moreover the experimental results demonstrate a strongly damped ultrafast circular polarization oscillation due to spin injection with an oscillation frequency of approximately 11GHz depending on the birefringence in the VCSEL device. We compare our experimental results with theoretical calculations based on rate-equations. This allows us to predict undamped long persisting ultrafast polarization oscillations, which reveal the potential of spin-VCSELs for ultrafast modulation applications

    4He experiments can serve as a database for determining the three-nucleon force

    Full text link
    We report on microscopic calculations for the 4He compound system in the framework of the resonating group model employing realistic nucleon-nucleon and three nucleon forces. The resulting scattering phase shifts are compared to those of a comprehensive R-matrix analysis of all data in this system, which are available in numerical form. The agreement between calculation and analysis is in most cases very good. Adding three-nucleon forces yields in many cases large effects. For a few cases the new agreement is striking. We relate some differencies between calculation and analysis to specific data and discuss neccessary experiments to clarify the situation. From the results we conclude that the data of the 4He system might be well suited to determine the structure of the three-nucleon force.Comment: title changed,note added, format of figures changed, appearance of figures in black-and-white changed, Phys. Rev. C accepte
    • 

    corecore