37 research outputs found

    Characterisation of barley resistance to rhynchosporium on chromosome 6HS

    Get PDF
    Key Message: Major resistance gene to rhynchosporium, Rrs18, maps close to the telomere on the short arm of chromosome 6H in barley. Rhynchosporium or barley scald caused by a fungal pathogen Rhynchosporium commune is one of the most destructive and economically important diseases of barley in the world. Testing of Steptoe × Morex and CIho 3515 × Alexis doubled haploid populations has revealed a large effect QTL for resistance to R. commune close to the telomere on the short arm of chromosome 6H, present in both populations. Mapping markers flanking the QTL from both populations onto the 2017 Morex genome assembly revealed a rhynchosporium resistance locus independent of Rrs13 that we named Rrs18. The causal gene was fine mapped to an interval of 660 Kb using Steptoe × Morex backcross 1 S₂ and S₃ lines with molecular markers developed from Steptoe exome capture variant calling. Sequencing RNA from CIho 3515 and Alexis revealed that only 4 genes within the Rrs18 interval were transcribed in leaf tissue with a serine/threonine protein kinase being the most likely candidate for Rrs18.Max Coulter, Bianca Büttner, Kerstin Hofmann, Micha Bayer, Luke Ramsay, Günther Schweizer, Robbie Waugh, Mark E. Looseley, Anna Avrov

    HMMerThread: Detecting Remote, Functional Conserved Domains in Entire Genomes by Combining Relaxed Sequence-Database Searches with Fold Recognition

    Get PDF
    Conserved domains in proteins are one of the major sources of functional information for experimental design and genome-level annotation. Though search tools for conserved domain databases such as Hidden Markov Models (HMMs) are sensitive in detecting conserved domains in proteins when they share sufficient sequence similarity, they tend to miss more divergent family members, as they lack a reliable statistical framework for the detection of low sequence similarity. We have developed a greatly improved HMMerThread algorithm that can detect remotely conserved domains in highly divergent sequences. HMMerThread combines relaxed conserved domain searches with fold recognition to eliminate false positive, sequence-based identifications. With an accuracy of 90%, our software is able to automatically predict highly divergent members of conserved domain families with an associated 3-dimensional structure. We give additional confidence to our predictions by validation across species. We have run HMMerThread searches on eight proteomes including human and present a rich resource of remotely conserved domains, which adds significantly to the functional annotation of entire proteomes. We find ∼4500 cross-species validated, remotely conserved domain predictions in the human proteome alone. As an example, we find a DNA-binding domain in the C-terminal part of the A-kinase anchor protein 10 (AKAP10), a PKA adaptor that has been implicated in cardiac arrhythmias and premature cardiac death, which upon stress likely translocates from mitochondria to the nucleus/nucleolus. Based on our prediction, we propose that with this HLH-domain, AKAP10 is involved in the transcriptional control of stress response. Further remotely conserved domains we discuss are examples from areas such as sporulation, chromosome segregation and signalling during immune response. The HMMerThread algorithm is able to automatically detect the presence of remotely conserved domains in proteins based on weak sequence similarity. Our predictions open up new avenues for biological and medical studies. Genome-wide HMMerThread domains are available at http://vm1-hmmerthread.age.mpg.de

    ENIGMA-anxiety working group : Rationale for and organization of large-scale neuroimaging studies of anxiety disorders

    Get PDF
    Altres ajuts: Anxiety Disorders Research Network European College of Neuropsychopharmacology; Claude Leon Postdoctoral Fellowship; Deutsche Forschungsgemeinschaft (DFG, German Research Foundation, 44541416-TRR58); EU7th Frame Work Marie Curie Actions International Staff Exchange Scheme grant 'European and South African Research Network in Anxiety Disorders' (EUSARNAD); Geestkracht programme of the Netherlands Organization for Health Research and Development (ZonMw, 10-000-1002); Intramural Research Training Award (IRTA) program within the National Institute of Mental Health under the Intramural Research Program (NIMH-IRP, MH002781); National Institute of Mental Health under the Intramural Research Program (NIMH-IRP, ZIA-MH-002782); SA Medical Research Council; U.S. National Institutes of Health grants (P01 AG026572, P01 AG055367, P41 EB015922, R01 AG060610, R56 AG058854, RF1 AG051710, U54 EB020403).Anxiety disorders are highly prevalent and disabling but seem particularly tractable to investigation with translational neuroscience methodologies. Neuroimaging has informed our understanding of the neurobiology of anxiety disorders, but research has been limited by small sample sizes and low statistical power, as well as heterogenous imaging methodology. The ENIGMA-Anxiety Working Group has brought together researchers from around the world, in a harmonized and coordinated effort to address these challenges and generate more robust and reproducible findings. This paper elaborates on the concepts and methods informing the work of the working group to date, and describes the initial approach of the four subgroups studying generalized anxiety disorder, panic disorder, social anxiety disorder, and specific phobia. At present, the ENIGMA-Anxiety database contains information about more than 100 unique samples, from 16 countries and 59 institutes. Future directions include examining additional imaging modalities, integrating imaging and genetic data, and collaborating with other ENIGMA working groups. The ENIGMA consortium creates synergy at the intersection of global mental health and clinical neuroscience, and the ENIGMA-Anxiety Working Group extends the promise of this approach to neuroimaging research on anxiety disorders

    Cortical and subcortical brain structure in generalized anxiety disorder: findings from 28 research sites in the ENIGMA-Anxiety Working Group

    Get PDF
    The goal of this study was to compare brain structure between individuals with generalized anxiety disorder (GAD) and healthy controls. Previous studies have generated inconsistent findings, possibly due to small sample sizes, or clinical/analytic heterogeneity. To address these concerns, we combined data from 28 research sites worldwide through the ENIGMA-Anxiety Working Group, using a single, pre-registered mega-analysis. Structural magnetic resonance imaging data from children and adults (5–90 years) were processed using FreeSurfer. The main analysis included the regional and vertex-wise cortical thickness, cortical surface area, and subcortical volume as dependent variables, and GAD, age, age-squared, sex, and their interactions as independent variables. Nuisance variables included IQ, years of education, medication use, comorbidities, and global brain measures. The main analysis (1020 individuals with GAD and 2999 healthy controls) included random slopes per site and random intercepts per scanner. A secondary analysis (1112 individuals with GAD and 3282 healthy controls) included fixed slopes and random intercepts per scanner with the same variables. The main analysis showed no effect of GAD on brain structure, nor interactions involving GAD, age, or sex. The secondary analysis showed increased volume in the right ventral diencephalon in male individuals with GAD compared to male healthy controls, whereas female individuals with GAD did not differ from female healthy controls. This mega-analysis combining worldwide data showed that differences in brain structure related to GAD are small, possibly reflecting heterogeneity or those structural alterations are not a major component of its pathophysiology

    Cortical and subcortical brain structure in generalized anxiety disorder: findings from 28 research sites in the enigma-anxiety working group

    Get PDF
    The goal of this study was to compare brain structure between individuals with generalized anxiety disorder (GAD) and healthy controls. Previous studies have generated inconsistent findings, possibly due to small sample sizes, or clinical/analytic heterogeneity. To address these concerns, we combined data from 28 research sites worldwide through the ENIGMA-Anxiety Working Group, using a single, pre-registered mega-analysis. Structural magnetic resonance imaging data from children and adults (5–90 years) were processed using FreeSurfer. The main analysis included the regional and vertex-wise cortical thickness, cortical surface area, and subcortical volume as dependent variables, and GAD, age, age-squared, sex, and their interactions as independent variables. Nuisance variables included IQ, years of education, medication use, comorbidities, and global brain measures. The main analysis (1020 individuals with GAD and 2999 healthy controls) included random slopes per site and random intercepts per scanner. A secondary analysis (1112 individuals with GAD and 3282 healthy controls) included fixed slopes and random intercepts per scanner with the same variables. The main analysis showed no effect of GAD on brain structure, nor interactions involving GAD, age, or sex. The secondary analysis showed increased volume in the right ventral diencephalon in male individuals with GAD compared to male healthy controls, whereas female individuals with GAD did not differ from female healthy controls. This mega-analysis combining worldwide data showed that differences in brain structure related to GAD are small, possibly reflecting heterogeneity or those structural alterations are not a major component of its pathophysiology

    Effects of Anacetrapib in Patients with Atherosclerotic Vascular Disease

    Get PDF
    BACKGROUND: Patients with atherosclerotic vascular disease remain at high risk for cardiovascular events despite effective statin-based treatment of low-density lipoprotein (LDL) cholesterol levels. The inhibition of cholesteryl ester transfer protein (CETP) by anacetrapib reduces LDL cholesterol levels and increases high-density lipoprotein (HDL) cholesterol levels. However, trials of other CETP inhibitors have shown neutral or adverse effects on cardiovascular outcomes. METHODS: We conducted a randomized, double-blind, placebo-controlled trial involving 30,449 adults with atherosclerotic vascular disease who were receiving intensive atorvastatin therapy and who had a mean LDL cholesterol level of 61 mg per deciliter (1.58 mmol per liter), a mean non-HDL cholesterol level of 92 mg per deciliter (2.38 mmol per liter), and a mean HDL cholesterol level of 40 mg per deciliter (1.03 mmol per liter). The patients were assigned to receive either 100 mg of anacetrapib once daily (15,225 patients) or matching placebo (15,224 patients). The primary outcome was the first major coronary event, a composite of coronary death, myocardial infarction, or coronary revascularization. RESULTS: During the median follow-up period of 4.1 years, the primary outcome occurred in significantly fewer patients in the anacetrapib group than in the placebo group (1640 of 15,225 patients [10.8%] vs. 1803 of 15,224 patients [11.8%]; rate ratio, 0.91; 95% confidence interval, 0.85 to 0.97; P=0.004). The relative difference in risk was similar across multiple prespecified subgroups. At the trial midpoint, the mean level of HDL cholesterol was higher by 43 mg per deciliter (1.12 mmol per liter) in the anacetrapib group than in the placebo group (a relative difference of 104%), and the mean level of non-HDL cholesterol was lower by 17 mg per deciliter (0.44 mmol per liter), a relative difference of -18%. There were no significant between-group differences in the risk of death, cancer, or other serious adverse events. CONCLUSIONS: Among patients with atherosclerotic vascular disease who were receiving intensive statin therapy, the use of anacetrapib resulted in a lower incidence of major coronary events than the use of placebo. (Funded by Merck and others; Current Controlled Trials number, ISRCTN48678192 ; ClinicalTrials.gov number, NCT01252953 ; and EudraCT number, 2010-023467-18 .)

    Combined targeting of AKT and mTOR synergistically inhibits proliferation of hepatocellular carcinoma cells

    Full text link
    Abstract Background Due to the frequent dysregulation of the PI3K/AKT/mTOR signaling pathway, mTOR represents a suitable therapeutic target in hepatocellular carcinoma (HCC). However, emerging data from clinical trials of HCC patients indicate that mTOR inhibition by RAD001 (Everolimus) alone has only moderate antitumor efficacy which may be due to the feedback activation of AKT after mTOR inhibition. In this study, we analyzed the effects of dual inhibition of mTOR and AKT on the proliferation of HCC cell lines. In addition, we measured the feedback activation of each of the AKT isoforms after mTOR inhibition in HCC cell lines and their enzymatic activity in primary samples from HCC patients. Methods The activation status of specific AKT isoforms in human HCC samples and corresponding healthy liver tissue was analyzed using an AKT isoform specific in vitro kinase assay. AKT isoform activation after mTOR inhibition was analyzed in three HCC cell lines (Hep3B, HepG2 and Huh7), and the impact of AKT signaling on proliferation after mTOR inhibition was investigated using the novel AKT inhibitor MK-2206 and AKT isoform specific knockdown cells. Results AKT isoforms become differentially activated during feedback activation following RAD001 treatment. The combination of mTOR inhibition and AKT isoform knockdown showed only a weak synergistic effect on proliferation of HCC cell lines. However, the combinatorial treatment with RAD001 and the pan AKT inhibitor MK-2206 resulted in a strong synergism, both in vitro and in vivo. Moreover, by analyzing primary HCC tissue samples we were able to demonstrate that a hotspot mutation (H1047R) of PI3KCA, the gene encoding the catalytic subunit of PI3K, was associated with increased in vitro kinase activity of all AKT isoforms in comparison to healthy liver tissue of the patient. Conclusion Our results demonstrate that dual targeting of mTOR and AKT by use of RAD001 and the pan AKT inhibitor MK-2206 does effectively inhibit proliferation of HCC cell lines. These data suggest that combined treatment with RAD001 and MK-2206 may be a promising therapy approach in the treatment of hepatocellular carcinoma.</p
    corecore