2 research outputs found

    Reduced Graphene Oxide as a Monolithic Multifunctional Conductive Binder for Activated Carbon Supercapacitors

    No full text
    Using reduced graphene oxide (r-GO) as a multifunctional conductive binder, a simple, cost-effective, and environmentally friendly approach is developed to fabricate activated carbon/reduced graphene oxide (AC/r-GO) composite electrodes for supercapacitors with outstanding performance. In such a composite, r-GO provides several much needed critical functions: r-GO not only serves as the binder material improving the AC particle/particle cohesion and electrode-film/substrate adhesion but also improves the electrical conductivity of the composite and provides additional surfaces for ion adsorption. Furthermore, during electrode fabrication, initial GO precursor functions as an effective dispersant for AC, resulting in a stable electrode material slurry. Employing characterization by advanced microscopy techniques, we show that AC and r-GO assemble into an interconnected network structure, resulting in a composite with high specific capacitance, excellent rate capability, and long cycling life stability. Such high-performance electrodes coupled with their relatively simple, scalable, and low-cost fabrication process thereby provide a clear pathway toward large-scale implementation of supercapacitors.© 2018 American Chemical Societ

    First steps towards a generic sample preparation scheme for inorganic engineered nanoparticles in a complex matrix for detection, characterization, and quantification by asymmetric flow-field flow fractionation coupled to multi-angle light scattering and ICP-MS

    No full text
    The applicability of a multi-step generic procedure to systematically develop sample preparation methods for the detection, characterization, and quantification of inorganic engineered nanoparticles (ENPs) in a complex matrix was successfully demonstrated. The research focused on the optimization of the sample preparation, aiming to achieve a complete separation of ENPs from a complex matrix without altering the ENP size distribution and with minimal loss of ENPs. The separated ENPs were detected and further characterized in terms of particle size distribution and quantified in terms of elemental mass content by asymmetric flow-field flow fractionation coupled to a multi-angle light scattering detector and an inductively coupled plasma mass spectrometer. Following the proposed generic procedure SiO2-ENPs were separated from a tomato soup. Two potential sample preparation methods were tested these being acid digestion and colloidal extraction. With the developed method a complete SiO2-ENPs and matrix separation with a Si mass recovery >90% was achieved by acid digestion. The alteration of the particle size distribution was minimized by particle stabilization. The generic procedure which also provides quality criteria for method development is urgently needed for standardized and systematic development of procedures for separation of ENPs from a complex matrix. The chosen analytical technique was shown to be suitable for detecting SiO2-ENPs in a complex food matrix like tomato soup and may therefore be extended to monitor the existence of ENPs during production and safety control of foodstuffs, food labelling, and compliance with legislative limits
    corecore