283 research outputs found
Electric pulse characteristics can enable species recognition in African weakly electric fish species
Nagel R, Kirschbaum F, Hofmann V, Engelmann J, Tiedemann R. Electric pulse characteristics can enable species recognition in African weakly electric fish species. SCIENTIFIC REPORTS. 2018;8(1): 10799.Communication is key to a wide variety of animal behaviours and multiple modalities are often involved in this exchange of information from sender to receiver. The communication of African weakly electric fish, however, is thought to be predominantly unimodal and is mediated by their electric sense, in which species-specific electric organ discharges (EODs) are generated in a context-dependent and thus variable sequence of pulse intervals (SPI). While the primary function of the electric sense is considered to be electrolocation, both of its components likely carry information regarding identity of the sender. However, a clear understanding of their contribution to species recognition is incomplete. We therefore analysed these two electrocommunication components (EOD waveform and SPI statistics) in two sympatric mormyrid Campylomormyrus species. In a set of five playback conditions, we further investigated which components may drive interspecific recognition and discrimination. While we found that both electrocommunication components are species-specific, the cues necessary for species recognition differ between the two species studied. While the EOD waveform and SPI were both necessary and sufficient for species recognition in C. compressirostris males, C. tamandua males apparently utilize other, non-electric modalities. Mapped onto a recent phylogeny, our results suggest that discrimination by electric cues alone may be an apomorphic trait evolved during a recent radiation in this taxon
COMBINED USE OF OSCILLATING MEANS AND ELLIPSOMETRY TO DETERMINE UNCORRELATED EFFECTIVE THICKNESS AND OPTICAL CONSTANTS OF MATERIAL DEPOSITED AT OR ETCHED FROM A WORKING ELECTRODE THAT PREFERRABLY COMPRISES NON - NORMAL ORIENTED NANOFIBERS
Disclosed are systems and methods that enable determination of uncorrelated thickness of a working electrode and surface region optical constants in settings involving electrochemical processing at a working electrodes in a Piezo electric Balance system , by simultaneous application of an Ellipsometer system , the working electrode optionally having a multiplicity of nanofibers that are oriented non normally to a surface of said working electrode . Further disclosed is , simultaneous with said determinations , the monitoring of electrochemical processes at a piezoelectric balance working electrode driven by electrical energy applied between said working electrode and counter electrode
Shotgun ion mobility mass spectrometry sequencing of heparan sulfate saccharides
Despite evident regulatory roles of heparan sulfate (HS) saccharides in numerous biological processes, definitive information on the bioactive sequences of these polymers is lacking, with only a handful of natural structures sequenced to date. Here, we develop a “Shotgun” Ion Mobility Mass Spectrometry Sequencing (SIMMS2) method in which intact HS saccharides are dissociated in an ion mobility mass spectrometer and collision cross section values of fragments measured. Matching of data for intact and fragment ions against known values for 36 fully defined HS saccharide structures (from di- to decasaccharides) permits unambiguous sequence determination of validated standards and unknown natural saccharides, notably including variants with 3O-sulfate groups. SIMMS2 analysis of two fibroblast growth factor-inhibiting hexasaccharides identified from a HS oligosaccharide library screen demonstrates that the approach allows elucidation of structure-activity relationships. SIMMS2 thus overcomes the bottleneck for decoding the informational content of functional HS motifs which is crucial for their future biomedical exploitation
Room Temperature Incorporation of Arsenic Atoms into the Germanium (001) Surface
Germanium has emerged as an exceptionally promising material for spintronics and quantum information applications, with significant fundamental advantages over silicon. However, efforts to create atomic-scale devices using donor atoms as qubits have largely focused on phosphorus in silicon. Positioning phosphorus in silicon with atomic-scale precision requires a thermal incorporation anneal, but the low success rate for this step has been shown to be a fundamental limitation prohibiting the scale-up to large-scale devices. Here, we present a comprehensive study of arsine (AsH3) on the germanium (001) surface. We show that, unlike any previously studied dopant precursor on silicon or germanium, arsenic atoms fully incorporate into substitutional surface lattice sites at room temperature. Our results pave the way for the next generation of atomic-scale donor devices combining the superior electronic properties of germanium with the enhanced properties of arsine/germanium chemistry that promises scale-up to large numbers of deterministically placed qubits
Room Temperature Incorporation of Arsenic Atoms into the Germanium (001) Surface**
Germanium has emerged as an exceptionally promising material for spintronics and quantum information applications, with significant fundamental advantages over silicon. However, efforts to create atomic-scale devices using donor atoms as qubits have largely focused on phosphorus in silicon. Positioning phosphorus in silicon with atomic-scale precision requires a thermal incorporation anneal, but the low success rate for this step has been shown to be a fundamental limitation prohibiting the scale-up to large-scale devices. Here, we present a comprehensive study of arsine (AsH3) on the germanium (001) surface. We show that, unlike any previously studied dopant precursor on silicon or germanium, arsenic atoms fully incorporate into substitutional surface lattice sites at room temperature. Our results pave the way for the next generation of atomic-scale donor devices combining the superior electronic properties of germanium with the enhanced properties of arsine/germanium chemistry that promises scale-up to large numbers of deterministically placed qubits
Inhibition of Inducible Nitric Oxide Synthase Prevents IL-1β-Induced Mitochondrial Dysfunction in Human Chondrocytes
Interleukin (IL)-1β is an important pro-inflammatory cytokine in the progression of osteoarthritis (OA), which impairs mitochondrial function and induces the production of nitric oxide (NO) in chondrocytes. The aim was to investigate if blockade of NO production prevents IL-1βinduced mitochondrial dysfunction in chondrocytes and whether cAMP and AMP-activated protein kinase (AMPK) affects NO production and mitochondrial function. Isolated human OA chondrocytes were stimulated with IL-1β in combination with/without forskolin, L-NIL, AMPK activator or inhibitor. The release of NO, IL-6, PGE2 , MMP3, and the expression of iNOS were measured by ELISA or Western blot. Parameters of mitochondrial respiration were measured using a seahorse analyzer. IL-1β significantly induced NO release and mitochondrial dysfunction. Inhibition of iNOS by L-NIL prevented IL-1β-induced NO release and mitochondrial dysfunction but not IL-1β-induced release of IL-6, PGE2 , and MMP3. Enhancement of cAMP by forskolin reduced IL-1β-induced NO release and prevented IL-1β-induced mitochondrial impairment. Activation of AMPK increased IL-1β-induced NO production and the negative impact of IL-1β on mitochondrial respiration, whereas inhibition of AMPK had the opposite effects. NO is critically involved in the IL-1β-induced impairment of mitochondrial respiration in human OA chondrocytes. Increased intracellular cAMP or inhibition of AMPK prevented both IL-1β-induced NO release and mitochondrial dysfunction
The squirrel is in the detail: Anatomy and morphometry of the tail in Sciuromorpha (Rodentia, Mammalia)
In mammals, the caudal vertebrae are certainly among the least studied elements of their skeleton. However, the tail plays an important role in locomotion (e.g., balance, prehensility) and behavior (e.g., signaling). Previous studies largely focused on prehensile tails in Primates and Carnivora, in which certain osteological features were selected and used to define tail regions (proximal, transitional, distal). Interestingly, the distribution pattern of these anatomical characters and the relative proportions of the tail regions were similar in both orders. In order to test if such tail regionalization can be applied to Rodentia, we investigated the caudal vertebrae of 20 Sciuridae and six Gliridae species. Furthermore, we examined relationships between tail anatomy/morphometry and locomotion. The position of selected characters along the tail was recorded and their distribution was compared statistically using Spearman rank correlation. Vertebral body length (VBL) was measured to calculate the proportions of each tail region and to perform procrustes analysis on the shape of relative vertebral body length (rVBL) progressions. Our results show that tail regionalization, as defined for Primates and Carnivora, can be applied to almost all investigated squirrels, regardless of their locomotor category. Moreover, major locomotor categories can be distinguished by rVBL progression and tail region proportions. In particular, the small flying squirrels Glaucomys volans and Hylopetes sagitta show an extremely short transitional region. Likewise, several semifossorial taxa can be distinguished by their short distal region. Moreover, among flying squirrels, Petaurista petaurista shows differences with the small flying squirrels, mirroring previous observations on locomotory adaptations based on their inner ear morphometry. Our results show furthermore that the tail region proportions of P. petaurista, phylogenetically more basal than the small flying squirrels, are similar to those of bauplan-conservative arboreal squirrels
Fibronectin Contributes to a Braf Inhibitor-Driven Invasive Phenotype in Thyroid Cancer Through EGR1, Which Can Be Blocked by Inhibition of ERK1/2
Mutations in BRAF are common in advanced papillary and anaplastic thyroid cancer (PTC and ATC). However, patients with BRAF-mutant PTC currently lack therapies targeting this pathway. Despite the approved combination of BRAF and MEK1/2 inhibition for patients with BRAF-mutant ATC, these patients often progress. Thus, we screened a panel of BRAF-mutant thyroid cancer cell lines to identify new therapeutic strategies. We showed that thyroid cancer cells resistant to BRAF inhibition (BRAFi) exhibit an increase in invasion and a proinvasive secretome in response to BRAFi. Using reverse-phase protein array (RPPA), we identified a nearly 2-fold increase in expression of the extracellular matrix protein, fibronectin, in response to BRAFi treatment, and a corresponding 1.8- to 3.0-fold increase in fibronectin secretion. Accordingly, the addition of exogenous fibronectin phenocopied the BRAFi-induced increase in invasion while depletion of fibronectin in resistant cells resulted in loss of increased invasion. We further showed that BRAFi-induced invasion can be blocked by inhibition of ERK1/2. In a BRAFi-resistant patient-derived xenograft model, we found that dual inhibition of BRAF and ERK1/2 slowed tumor growth and decreased circulating fibronectin. Using RNA sequencing, we identified EGR1 as a top downregulated gene in response to combined BRAF/ERK1/2 inhibition, and we further showed that EGR1 is necessary for a BRAFi-induced increase in invasion and for induction of fibronectin in response to BRAFi.
Implications: Together, these data show that increased invasion represents a new mechanism of resistance to BRAF inhibition in thyroid cancer that can be targeted with an ERK1/2 inhibitor
Medien- und Technologienutzung durch jihadistische Straftäter*innen
Das vorliegende MOTRA-Spotlight schildert Erkenntnisse zur Nutzung von Medien und Technologien, die im Strafverfahren thematisiert wurden. Dabei lässt sich zeigen, dass Medien und Technologien im Zusammenhang mit Terrorismusstraftaten hauptsächlich zu Kommunikationszwecken genutzt werden, und zwar sowohl für die (klandestine) Kommunikation mit anderen extremistischen Akteur*innen als auch in Zusammenhang mit der Propaganda, die sich an ein unbekanntes, aber grundsätzlich interessiertes Publikum richtet. Demgegenüber erweisen sich unmittelbare Bezüge zur Planung oder Durchführung terroristischer Anschläge als selten. Dies liegt insbesondere daran, dass die meisten Personen der vorliegenden Stichprobe zu einer terroristischen Vereinigung ins Ausland gereist sind und nicht selbst einen Anschlag planten oder durchführten
- …