17,613 research outputs found
Simulation of interaction Hamiltonians by quantum feedback: a comment on the dynamics of information exchange between coupled systems
Since quantum feedback is based on classically accessible measurement
results, it can provide fundamental insights into the dynamics of quantum
systems by making available classical information on the evolution of system
properties and on the conditional forces acting on the system. In this paper,
the feedback-induced interaction dynamics between a pair of quantum systems is
analyzed. It is pointed out that any interaction Hamiltonian can be simulated
by local feedback if the levels of decoherence are sufficiently high. The
boundary between genuine entanglement generating quantum interactions and
non-entangling classical interactions is identified and the nature of the
information exchange between two quantum systems during an interaction is
discussed.Comment: 14 pages, 4 figures; invited paper for the special issue of J. Opt. B
on quantum contro
Many-body Theory at Extreme Isospin
The structure of nuclei far off beta-stability is investigated by nuclear
many-body theory. In-medium interactions for asymmetric nuclear matter are
obtained by (Dirac-) Brueckner theory thus establishing the link of nuclear
forces to free space interactions. HFB and RPA theory is used to describe
ground and excited states of nuclei from light to heavy masses. In extreme
dripline systems pairing and core polarization are found to be most important
for the binding, especially of halo nuclei. The calculations show that far off
stability mean-field dynamics is gradually replaced by dynamical correlations,
giving rise to the dissolution of shell structures.Comment: 10 pages, 5 figures, to appear in the proceedings of Nuclear Physics
at the Borderline, NPBL2001, Lipari, Sicily, Italy, May 2001 (World
Scientific
Optimized phase switching using a single atom nonlinearity
We show that a nonlinear phase shift of pi can be obtained by using a single
two level atom in a one sided cavity with negligible losses. This result
implies that the use of a one sided cavity can significantly improve the pi/18
phase shift previously observed by Turchette et al. [Phys. Rev. Lett. 75, 4710
(1995)].Comment: 6 pages, 3 figures, added comments on derivation and assumption
Evidence for bipolar jets in late stages of AGB winds
Bipolar expansion at various stages of evolution has been recently observed
in a number of AGB stars. The expansion is driven by bipolar jets that emerge
late in the evolution of AGB winds. The wind traps the jets, resulting in an
expanding, elongated cocoon. Eventually the jets break-out from the confining
spherical wind, as recently observed in W43A. This source displays the most
advanced evolutionary stage of jets in AGB winds. The earliest example is
IRC+10011, where the asymmetry is revealed in high-resolution near-IR imaging.
In this source the jets turned on only ~200 years ago, while the spherical wind
is ~4000 years old.Comment: 6 pages, to appear in "Asymmetrical Planetary Nebulae III" editors M.
Meixner, J. Kastner, N. Soker, & B. Balick (ASP Conf. Series
The valvula cerebelli of the spiny eel, Macrognathus aculeatus, receives primary lateral-line afferents from the rostrum of the upper jaw
In the spiny eel, Macrognathus aculeatus, anterodorsal and (to a lesser degree) anteroventral lateralline nerves project massively to the granular layer of the valvula cerebelli, throughout its rostrocaudal extent. The posterior lateral-line nerve terminates in the corpus cerebelli. Thus, valvula and corpus cerebelli are supplied with mechanosensory input of different peripheral origins. An analysis of the taxonomic distribution of experimentally determined primary lateral-line input to the three parts of the teleostean cerebellum reveals that the eminentia granularis always receives such input, and that the corpus cerebelli is the recipient of primary lateral-line input in many teleosts. The valvula, however, receives primary lateral-line afferents in only two examined species. In M. aculeatus, the massive lateral-line input to the valvula probably originates in mechanoreceptors located in the elongated rostrum of the upper jaw, a characteristic feature of mastacembeloid fishes. This projection to the valvula may therefore represent a unique specialization that arose with the evolution of the peculiar rostrum
Computing Web-scale Topic Models using an Asynchronous Parameter Server
Topic models such as Latent Dirichlet Allocation (LDA) have been widely used
in information retrieval for tasks ranging from smoothing and feedback methods
to tools for exploratory search and discovery. However, classical methods for
inferring topic models do not scale up to the massive size of today's publicly
available Web-scale data sets. The state-of-the-art approaches rely on custom
strategies, implementations and hardware to facilitate their asynchronous,
communication-intensive workloads.
We present APS-LDA, which integrates state-of-the-art topic modeling with
cluster computing frameworks such as Spark using a novel asynchronous parameter
server. Advantages of this integration include convenient usage of existing
data processing pipelines and eliminating the need for disk writes as data can
be kept in memory from start to finish. Our goal is not to outperform highly
customized implementations, but to propose a general high-performance topic
modeling framework that can easily be used in today's data processing
pipelines. We compare APS-LDA to the existing Spark LDA implementations and
show that our system can, on a 480-core cluster, process up to 135 times more
data and 10 times more topics without sacrificing model quality.Comment: To appear in SIGIR 201
Spin induced gigahertz polarization oscillations in vertical-cavity surface-emitting laser devices
Spin-controlled vertical-cavity surface-emitting lasers (VCSELs) have been intensively studied in recent years because of the low threshold feasibility and the nonlinearity above threshold, which make spin-VCSELs very promising for spintronic devices. Here we investigate the circular polarization dynamics of VCSELs on a picosecond time scale after pulsed optical spin injection at room temperature. A hybrid excitation technique combining continuous-wave (cw) unpolarized electrical excitation slightly above threshold and pulsed polarized optical excitation is applied. The experimental results demonstrate ultrafast circular polarization oscillations with a frequency of about 11 GHz. The oscillations last inside the first undulation of the intensity relaxation oscillations. Via theoretical calculations based on a rate equation model we analyze these oscillations as well as the underlying physical mechanisms
Ultrafast circular polarization oscillations in spin-polarized vertical-cavity surface-emitting laser devices
Spin-polarized lasers offer new encouraging possibilities for future devices. We investigate the polarization dynamics of electrically pumped vertical-cavity surface-emitting lasers after additional spin injection at room temperature. We find that the circular polarization degree exhibits faster dynamics than the emitted light. Moreover the experimental results demonstrate a strongly damped ultrafast circular polarization oscillation due to spin injection with an oscillation frequency of approximately 11GHz depending on the birefringence in the VCSEL device. We compare our experimental results with theoretical calculations based on rate-equations. This allows us to predict undamped long persisting ultrafast polarization oscillations, which reveal the potential of spin-VCSELs for ultrafast modulation applications
4He experiments can serve as a database for determining the three-nucleon force
We report on microscopic calculations for the 4He compound system in the
framework of the resonating group model employing realistic nucleon-nucleon and
three nucleon forces. The resulting scattering phase shifts are compared to
those of a comprehensive R-matrix analysis of all data in this system, which
are available in numerical form. The agreement between calculation and analysis
is in most cases very good. Adding three-nucleon forces yields in many cases
large effects. For a few cases the new agreement is striking. We relate some
differencies between calculation and analysis to specific data and discuss
neccessary experiments to clarify the situation. From the results we conclude
that the data of the 4He system might be well suited to determine the structure
of the three-nucleon force.Comment: title changed,note added, format of figures changed, appearance of
figures in black-and-white changed, Phys. Rev. C accepte
- âŠ