7,023 research outputs found
A New and Elementary CP^n Dyonic Magnon
We show that the dressing transformation method produces a new type of dyonic
CP^n magnon in terms of which all the other known solutions are either
composites or arise as special limits. In particular, this includes the
embedding of Dorey's dyonic magnon via an RP^3 subspace of CP^n. We also show
how to generate Dorey's dyonic magnon directly in the S^n sigma model via the
dressing method without resorting to the isomorphism with the SU(2) principle
chiral model when n=3. The new dyon is shown to be either a charged dyon or
topological kink of the related symmetric-space sine-Gordon theories associated
to CP^n and in this sense is a direct generalization of the soliton of the
complex sine-Gordon theory.Comment: 21 pages, JHEP3, typos correcte
Reflecting magnons from D7 and D5 branes
We obtain the reflection matrices for the scattering of elementary magnons
from certain open boundaries, corresponding to open strings ending on D7 and D5
branes in . In each case we consider two possible orientations
for the vacuum state. We show that symmetry arguments are sufficient to
determine the reflection matrices up to at most two unknown functions. The D7
reflection matrices obey the boundary Yang Baxter-Equation. This is automatic
for one vacuum orientation, and requires a natural choice of ratio between two
unknowns for the other. In contrast, the D5 reflection matrices do not obey the
boundary Yang Baxter-Equation. In both cases we show consistency with the
existent weak and strong coupling results.Comment: 32 pages, 1 figure; v2: added references and minor changes; v3: error
in boundary Yang-Baxter equation for D5 reflection matrix note
Light-like noncommutativity and duality from open strings/branes
In this paper we perform some non-trivial tests for the recently obtained
open membrane/D-brane metrics and `generalized' noncommutativity parameters
using Dp/NS5/M5-branes which have been deformed by light-like fields. The
results obtained give further evidence that these open membrane/D-brane metrics
and `generalized' noncommutativity parameters are correct. Further, we use the
open brane data and supergravity duals to obtain more information about
non-gravitational theories with light-like noncommutativity, or `generalized'
light-like noncommutativity. In particular, we investigate various duality
relations (strong coupling limits). In the light-like case we also comment on
the relation between open membrane data (open membrane metric etc.) in six
dimensions and open string data in five dimensions. Finally, we investigate the
strong coupling limit (high energy limit) of five dimensional NCYM with
\Theta^{12}=\Theta^{34}. In particular, we find that this NCYM theory can be UV
completed by a DLCQ compactification of M-theory.Comment: 24 pages, Latex. v2:Comments and references added. v3:Version
published in JHE
Integrable achiral D5-brane reflections and asymptotic Bethe equations
We study the reflection of magnons from a D5-brane in the framework of the
AdS/CFT correspondence. We consider two possible orientations of the D5-brane
with respect to the reference vacuum state, namely vacuum states aligned along
"vertical" and "horizontal" directions. We show that the reflections are of the
achiral type. We also show that the reflection matrices satisfy the boundary
Yang-Baxter equations for both orientations. In the horizontal case the
reflection matrix can be interpreted in terms of a bulk S-matrix, S(p, -p), and
factorizability of boundary scattering therefore follows from that of bulk
scattering. Finally, we solve the nested coordinate Bethe ansatz for the system
in the vertical case to find the Bethe equations. In the horizontal case, the
Bethe equations are of the same form as those for the closed string.Comment: 27 pages, 4 figures, v2: published versio
S-matrix for magnons in the D1-D5 system
We show that integrability and symmetries of the near horizon geometry of the
D1-D5 system determine the S-matrix for the scattering of magnons with
polarizations in AdS3 S3 completely up to a phase. Using
semi-classical methods we evaluate the phase to the leading and to the one-loop
approximation in the strong coupling expansion. We then show that the phase
obeys the unitarity constraint implied by the crossing relations to the
one-loop order. We also verify that the dispersion relation obeyed by these
magnons is one-loop exact at strong coupling which is consistent with their BPS
nature.Comment: 40 pages, Latex, Role of Virasoro constraints clarified, version
matches with published versio
Strings on Bubbling Geometries
We study gauge theory operators which take the form of a product of a trace
with a Schur polynomial, and their string theory duals. These states represent
strings excited on bubbling AdS geometries which are dual to the Schur
polynomials. These geometries generically take the form of multiple annuli in
the phase space plane. We study the coherent state wavefunction of the lattice,
which labels the trace part of the operator, for a general Young tableau and
their dual description on the droplet plane with a general concentric ring
pattern. In addition we identify a density matrix over the coherent states on
all the geometries within a fixed constraint. This density matrix may be used
to calculate the entropy of a given ensemble of operators. We finally recover
the BMN string spectrum along the geodesic near any circle from the ansatz of
the coherent state wavefunction.Comment: 41 pages, 12 figures, published version in JHE
A Lovelock black hole bestiary
We revisit the study of (A)dS black holes in Lovelock theories. We present a
new tool that allows to attack this problem in full generality. In analyzing
maximally symmetric Lovelock black holes with non-planar horizon topologies
many distinctive and interesting features are observed. Among them, the
existence of maximally symmetric vacua do not supporting black holes in vast
regions of the space of gravitational couplings, multi-horizon black holes, and
branches of solutions that suggest the existence of a rich diagram of phase
transitions. The appearance of naked singularities seems unavoidable in some
cases, raising the question about the fate of the cosmic censorship conjecture
in these theories. There is a preferred branch of solutions for planar black
holes, as well as non-planar black holes with high enough mass or temperature.
Our study clarifies the role of all branches of solutions, including
asymptotically dS black holes, and whether they should be considered when
studying these theories in the context of AdS/CFT.Comment: 40 pages, 16 figures; v2: references added and minor amendments; v3:
title changed to improve its accuracy and general reorganization of the
results to ameliorate their presentatio
Causality in AdS/CFT and Lovelock theory
We explore the constraints imposed on higher curvature corrections of the
Lovelock type due to causality restrictions in the boundary of asymptotically
AdS space-time. In the framework of AdS/CFT, this is related to positivity of
the energy constraints that arise in conformal collider physics. We present
explicit analytic results that fully address these issues for cubic Lovelock
gravity in arbitrary dimensions and give the formal analytic results that
comprehend general Lovelock theory. The computations can be performed in two
ways, both by considering a thermal setup in a black hole background and by
studying the scattering of gravitons with a shock wave in AdS. We show that
both computations coincide in Lovelock theory. The different helicities, as
expected, provide the boundaries defining the region of allowed couplings. We
generalize these results to arbitrary higher dimensions and discuss their
consequences on the shear viscosity to energy density ratio of CFT plasmas, the
possible existence of Boulware-Deser instabilities in Lovelock theory and the
extent to which the AdS/CFT correspondence might be valid for arbitrary
dimensions.Comment: 35 pages, 20 figures; v2: minor amendments and clarifications
include
- …