79 research outputs found

    Role of mitochondria in Parkinson disease

    Get PDF
    The cause of the selective degeneration of nigrostriatal neurons in Parkinson disease (PD) has remained largely unknown. Exceptions include rare missense mutations in the alpha-synuclein gene on chromosome 4, a potentially pathogenic mutation affecting the ubiquitin pathway, and mutations in the parkin gene on chromosome 6. However, unlike classical PD, the latter syndrome is not associated with the formation of typical Lewy bodies. In contrast, a biochemical defect of complex I of the mitochondrial respiratory chain has been described in a relatively large group of confirmed PD cases. Recent cybrid studies indicate that the complex I defect in PD has a genetic cause and that it may arise from mutations in the mitochondrial DNA, Sequence analysis of the mitochondrial genome supports the view that mitochondrial point mutations are involved in PD pathogenesis. However, although mitochondria function as regulators in several known forms of cell death, their exact involvement in PD has remained unresolved. This is of relevance because classical apoptosis does not appear to play a major role in the degeneration of the parkinsonian nigra

    Lack of complex I is associated with oncocytic thyroid tumours

    Get PDF
    Oncocytic tumours are characterised by hyperproliferation of mitochondria. We immunohistochemically analysed all enzymes of the oxidative phosphorylation system in 19 oncocytic thyroid tumours. A specific lack of complex I was detected, which was expressed at <5% of the level determined in surrounding non-cancerous tissue

    Augmenter of liver regeneration

    Get PDF
    ‘Augmenter of liver regeneration’ (ALR) (also known as hepatic stimulatory substance or hepatopoietin) was originally found to promote growth of hepatocytes in the regenerating or injured liver. ALR is expressed ubiquitously in all organs, and exclusively in hepatocytes in the liver. ALR, a survival factor for hepatocytes, exhibits significant homology with ERV1 (essential for respiration and viability) protein that is essential for the survival of the yeast, Saccharomyces cerevisiae. ALR comprises 198 to 205 amino acids (approximately 22 kDa), but is post-translationally modified to three high molecular weight species (approximately 38 to 42 kDa) found in hepatocytes. ALR is present in mitochondria, cytosol, endoplasmic reticulum, and nucleus. Mitochondrial ALR may be involved in oxidative phosphorylation, but also functions as sulfhydryl oxidase and cytochrome c reductase, and causes Fe/S maturation of proteins. ALR, secreted by hepatocytes, stimulates synthesis of TNF-α, IL-6, and nitric oxide in Kupffer cells via a G-protein coupled receptor. While the 22 kDa rat recombinant ALR does not stimulate DNA synthesis in hepatocytes, the short form (15 kDa) of human recombinant ALR was reported to be equipotent as or even stronger than TGF-α or HGF as a mitogen for hepatocytes. Altered serum ALR levels in certain pathological conditions suggest that it may be a diagnostic marker for liver injury/disease. Although ALR appears to have multiple functions, the knowledge of its role in various organs, including the liver, is extremely inadequate, and it is not known whether different ALR species have distinct functions. Future research should provide better understanding of the expression and functions of this enigmatic molecule

    Chemotherapy-Induced Late Transgenerational Effects in Mice

    Get PDF
    To our knowledge, there is no report on long-term reproductive and developmental side effects in the offspring of mothers treated with a widely used chemotherapeutic drug such as doxorubicin (DXR), and neither is there information on transmission of any detrimental effects to several filial generations. Therefore, the purpose of the present paper was to examine the long-term effects of a single intraperitoneal injection of DXR on the reproductive and behavioral performance of adult female mice and their progeny. C57BL/6 female mice (generation zero; G0) were treated with either a single intraperitoneal injection of DXR (G0-DXR) or saline (G0-CON). Data were collected on multiple reproductive parameters and behavioral analysis for anxiety, despair and depression. In addition, the reproductive capacity and health of the subsequent six generations were evaluated. G0-DXR females developed despair-like behaviors; delivery complications; decreased primordial follicle pool; and early lost of reproductive capacity. Surprisingly, the DXR-induced effects in oocytes were transmitted transgenerationally; the most striking effects being observed in G4 and G6, constituting: increased rates of neonatal death; physical malformations; chromosomal abnormalities (particularly deletions on chromosome 10); and death of mothers due to delivery complications. None of these effects were seen in control females of the same generations. Long-term effects of DXR in female mice and their offspring can be attributed to genetic alterations or cell-killing events in oocytes or, presumably, to toxicosis in non-ovarian tissues. Results from the rodent model emphasize the need for retrospective and long-term prospective studies of survivors of cancer treatment and their offspring

    Mammalian NADH:ubiquinone oxidoreductase (Complex I) and nicotinamide nucleotide transhydrogenase (Nnt) together regulate the mitochondrial production of H2O2—Implications for their role in disease, especially cancer

    Full text link

    細胞におけるタンパク質ジスルフィド結合創生の基本化学原理

    No full text

    Efficient selection and characterization of mutants of a human cell line which are defective in mitochondrial DNA-encoded subunits of respiratory NADH dehydrogenase.

    Get PDF
    The mitochondrial NADH dehydrogenase (complex I) in mammalian cells is a multimeric enzyme consisting of approximately 40 subunits, 7 of which are encoded in mitochondrial DNA (mtDNA). Very little is known about the function of these mtDNA-encoded subunits. In this paper, we describe the efficient isolation from a human cell line of mutants affected in any of these subunits. In the course of analysis of eight mutants of the human cell line VA2B selected for their resistance to high concentrations of the complex I inhibitor rotenone, seven were found to be respiration deficient, and among these, six exhibited a specific defect of complex I. Transfer of mitochondria from these six mutants into human mtDNA-less cells revealed, surprisingly, in all cases a cotransfer of the complex I defect but not of the rotenone resistance. This result indicated that the rotenone resistance resulted from a nuclear mutation, while the respiration defect was produced by an mtDNA mutation. A detailed molecular analysis of the six complex I-deficient mutants revealed that two of them exhibited a frameshift mutation in the ND4 gene, in homoplasmic or in heteroplasmic form, resulting in the complete or partial loss, respectively, of the ND4 subunit; two other mutants exhibited a frameshift mutation in the ND5 gene, in near-homoplasmic or heteroplasmic form, resulting in the ND5 subunit being undetectable or strongly decreased, respectively. It was previously reported (G. Hofhaus and G. Attardi, EMBO J. 12:3043-3048, 1993) that the mutant completely lacking the ND4 subunit exhibited a total loss of NADH:Q1 oxidoreductase activity and a lack of assembly of the mtDNA-encoded subunits of complex I. By contrast, in the mutant characterized in this study in which the ND5 subunit was not detectable and which was nearly totally deficient in complex I activity, the capacity to assemble the mtDNA-encoded subunits of the enzyme was preserved, although with a decreased efficiency or a reduced stability of the assembled complex. The two remaining complex I-deficient mutants exhibited a normal rate of synthesis and assembly of the mtDNA-encoded subunits of the enzyme, and the mtDNA mutation(s) responsible for their NADH dehydrogenase defect remains to be identified. The selection scheme used in this work has proven to be very valuable for the isolation of mutants from the VA2B cell line which are affected in different mtDNA-encoded subunits of complex I and may be applicable to other cell lines

    Comprehensive, rapid and sensitive detection of sequence variants of human mitochondrial tRNA genes.

    Get PDF
    In the present study, a comprehensive, rapid and sensitive method for screening sequence variation of the human mitochondrial tRNA genes has been developed. For this purpose, the denaturing gradient gel electrophoresis (DGGE) technique has been appropriately modified for simultaneous mutation analysis of a large number of samples and adapted so as to circumvent the problems caused by the anomalous electrophoretic behavior of DNA fragments encoding tRNA genes. Eighteen segments of mitochondrial DNA (mtDNA), each containing a single uniform melting domain, were selected to cover all tRNA-encoding regions using the computer program MELT94. All 18 segments were simultaneously analyzed by electrophoresis through a single broad range denaturing gradient gel under rigorously defined conditions, which prevent band broadening and other migration abnormalities from interfering with detection of sequence variants. All base substitutions tested, which include six natural mutations and 14 artificially introduced ones, have been detected successfully in the present study. Several types of evidence strongly suggest that the anomalous behavior in DGGE of tRNA gene-containing mtDNA fragments reflects their tendency to form temporary or stable alternative secondary structures under semi-denaturing conditions. The high sensitivity of the method, which can detect as low as 10% of mutant mtDNA visually, makes it valuable for the analysis of heteroplasmic mutations
    corecore