26,475 research outputs found
Reformulation in planning
Reformulation of a problem is intended to make the problem more amenable to efficient solution. This is equally true in the special case of reformulating a planning problem. This paper considers various ways in which reformulation can be exploited in planning
Suppression of spin-pumping by a MgO tunnel-barrier
Spin-pumping generates pure spin currents in normal metals at the ferromagnet
(F)/normal metal (N) interface. The efficiency of spin-pumping is given by the
spin mixing conductance, which depends on N and the F/N interface. We directly
study the spin-pumping through an MgO tunnel-barrier using the inverse spin
Hall effect, which couples spin and charge currents and provides a direct
electrical detection of spin currents in the normal metal. We find that
spin-pumping is suppressed by the tunnel-barrier, which is contrary to recent
studies that suggest that the spin mixing conductance can be enhanced by a
tunnel-barrier inserted at the interface
Exploring the Oxygen Order in Hg-1223 and Hg-1201 by 199Hg MAS NMR
We demonstrate the use of a high-resolution solid-state fast (45 kHz) magic
angle spinning (MAS) NMR for mapping the oxygen distribution in Hg-based
cuprate superconductors. We identify observed three peaks in 199Hg spectrum as
belonging to the different chemical environments in the HgO? layer with no
oxygen neighbors, single oxygen neighbor, and two oxygen neighbors. We discuss
observed differences between Hg-1201 and Hg-1223 materials.Comment: 4 pages, 2 figures included. Submitted to NATO Advanced Research
Workshop Proceedings (Miami January 2004
Surface spin flip probability of mesoscopic Ag wires
Spin relaxation in mesoscopic Ag wires in the diffusive transport regime is
studied via nonlocal spin valve and Hanle effect measurements performed on
permalloy/Ag lateral spin valves. The ratio between momentum and spin
relaxation times is not constant at low temperatures. This can be explained
with the Elliott-Yafet spin relaxation mechanism by considering the momentum
surface relaxation time as being temperature dependent. We present a model to
separately determine spin flip probabilities for phonon, impurity and surface
scattering and find that the spin flip probability is highest for surface
scattering.Comment: 5 pages, 4 figure
Spiral vortices traveling between two rotating defects in the Taylor-Couette system
Numerical calculations of vortex flows in Taylor-Couette systems with counter
rotating cylinders are presented. The full, time dependent Navier-Stokes
equations are solved with a combination of a finite difference and a Galerkin
method. Annular gaps of radius ratio and of several heights are
simulated. They are closed by nonrotating lids that produce localized Ekman
vortices in their vicinity and that prevent axial phase propagation of spiral
vortices. Existence and spatio temporal properties of rotating defects, of
modulated Ekman vortices, and of the spiral vortex structures in the bulk are
elucidated in quantitative detail.Comment: 9 pages, 9 figure
Hyperbolic Topological Invariants and the Black Hole Geometry
We discuss the isometry group structure of three-dimensional black holes and
Chern-Simons invariants. Aspects of the holographic principle relevant to black
hole geometry are analyzed.Comment: 11 pages, AMSTeX, Contribution to the Fifth Alexander Friedmann
International Seminar on Gravitation and Cosmolog
Detection and quantification of inverse spin Hall effect from spin pumping in permalloy/normal metal bilayers
Spin pumping is a mechanism that generates spin currents from ferromagnetic
resonance (FMR) over macroscopic interfacial areas, thereby enabling sensitive
detection of the inverse spin Hall effect that transforms spin into charge
currents in non-magnetic conductors. Here we study the spin-pumping-induced
voltages due to the inverse spin Hall effect in permalloy/normal metal bilayers
integrated into coplanar waveguides for different normal metals and as a
function of angle of the applied magnetic field direction, as well as microwave
frequency and power. We find good agreement between experimental data and a
theoretical model that includes contributions from anisotropic
magnetoresistance (AMR) and inverse spin Hall effect (ISHE). The analysis
provides consistent results over a wide range of experimental conditions as
long as the precise magnetization trajectory is taken into account. The spin
Hall angles for Pt, Pd, Au and Mo were determined with high precision to be
, , and ,
respectively.Comment: 11 page
- ā¦