25,190 research outputs found
Bifurcation of standing waves into a pair of oppositely traveling waves with oscillating amplitudes caused by a three-mode interaction
A novel flow state consisting of two oppositely travelling waves (TWs) with
oscillating amplitudes has been found in the counterrotating Taylor-Couette
system by full numerical simulations. This structure bifurcates out of axially
standing waves that are nonlinear superpositions of left and right handed
spiral vortex waves with equal time-independent amplitudes. Beyond a critical
driving the two spiral TW modes start to oscillate in counterphase due to a
Hopf bifurcation. The trigger for this bifurcation is provided by a nonlinearly
excited mode of different symmetry than the spiral TWs. A three-mode coupled
amplitude equation model is presented that captures this bifurcation scenario.
The mode-coupling between two symmetry degenerate critical modes and a
nonlinearly excited one that is contained in the model can be expected to occur
in other structure forming systems as well.Comment: 4 pages, 5 figure
Competition between Traveling Fluid Waves of Left and Right Spiral Vortices and Their Different Amplitude Combinations
Stability, bifurcation properties, and the spatiotemporal behavior of
different nonlinear combination structures of spiral vortices in the counter
rotating Taylor-Couette system are investigated by full numerical simulations
and by coupled amplitude equation approximations. Stable cross-spiral
structures with continuously varying content of left and right spiral modes are
found. They provide a stability transferring connection between the initially
stable, axially counter propagating wave states of pure spirals and the axially
standing waves of so-called ribbons that become stable slightly further away
from onset of vortex flow.Comment: 4 pages, 5 figure
Spiral vortices traveling between two rotating defects in the Taylor-Couette system
Numerical calculations of vortex flows in Taylor-Couette systems with counter
rotating cylinders are presented. The full, time dependent Navier-Stokes
equations are solved with a combination of a finite difference and a Galerkin
method. Annular gaps of radius ratio and of several heights are
simulated. They are closed by nonrotating lids that produce localized Ekman
vortices in their vicinity and that prevent axial phase propagation of spiral
vortices. Existence and spatio temporal properties of rotating defects, of
modulated Ekman vortices, and of the spiral vortex structures in the bulk are
elucidated in quantitative detail.Comment: 9 pages, 9 figure
Impact of elasticity on the piezoresponse of adjacent ferroelectric domains investigated by scanning force microscopy
As a consequence of elasticity, mechanical deformations of crystals occur on
a length scale comparable to their thickness. This is exemplified by applying a
homogeneous electric field to a multi-domain ferroelectric crystal: as one
domain is expanding the adjacent ones are contracting, leading to clamping at
the domain boundaries. The piezomechanically driven surface corrugation of
micron-sized domain patterns in thick crystals using large-area top electrodes
is thus drastically suppressed, barely accessible by means of piezoresponse
force microscopy
- …