180 research outputs found
The global atmospheric electrical circuit and climate
Evidence is emerging for physical links among clouds, global temperatures, the global atmospheric electrical circuit and cosmic ray ionisation. The global circuit extends throughout the atmosphere from the planetary surface to the lower layers of the ionosphere. Cosmic rays are the principal source of atmospheric ions away from the continental boundary layer: the ions formed permit a vertical conduction current to flow in the fair weather part of the global circuit. Through the (inverse) solar modulation of cosmic rays, the resulting columnar ionisation changes may allow the global circuit to convey a solar influence to meteorological phenomena of the lower atmosphere. Electrical effects on non-thunderstorm clouds have been proposed to occur via the ion-assisted formation of ultra-fine aerosol, which can grow to sizes able to act as cloud condensation nuclei, or through the increased ice nucleation capability of charged aerosols. Even small atmospheric electrical modulations on the aerosol size distribution can affect cloud properties and modify the radiative balance of the atmosphere, through changes communicated globally by the atmospheric electrical circuit. Despite a long history of work in related areas of geophysics, the direct and inverse relationships between the global circuit and global climate remain largely quantitatively unexplored. From reviewing atmospheric electrical measurements made over two centuries and possible paleoclimate proxies, global atmospheric electrical circuit variability should be expected on many timescale
History of clinical transplantation
How transplantation came to be a clinical discipline can be pieced together by perusing two volumes of reminiscences collected by Paul I. Terasaki in 1991-1992 from many of the persons who were directly involved. One volume was devoted to the discovery of the major histocompatibility complex (MHC), with particular reference to the human leukocyte antigens (HLAs) that are widely used today for tissue matching.1 The other focused on milestones in the development of clinical transplantation.2 All the contributions described in both volumes can be traced back in one way or other to the demonstration in the mid-1940s by Peter Brian Medawar that the rejection of allografts is an immunological phenomenon.3,4 © 2008 Springer New York
One sixth of Amazonian tree diversity is dependent on river floodplains
Amazonia's floodplain system is the largest and most biodiverse on Earth. Although forests are crucial to the ecological integrity of floodplains, our understanding of their species composition and how this may differ from surrounding forest types is still far too limited, particularly as changing inundation regimes begin to reshape floodplain tree communities and the critical ecosystem functions they underpin. Here we address this gap by taking a spatially explicit look at Amazonia-wide patterns of tree-species turnover and ecological specialization of the region's floodplain forests. We show that the majority of Amazonian tree species can inhabit floodplains, and about a sixth of Amazonian tree diversity is ecologically specialized on floodplains. The degree of specialization in floodplain communities is driven by regional flood patterns, with the most compositionally differentiated floodplain forests located centrally within the fluvial network and contingent on the most extraordinary flood magnitudes regionally. Our results provide a spatially explicit view of ecological specialization of floodplain forest communities and expose the need for whole-basin hydrological integrity to protect the Amazon's tree diversity and its function.Naturali
Mapping density, diversity and species-richness of the Amazon tree flora
Using 2.046 botanically-inventoried tree plots across the largest tropical forest on Earth, we mapped tree species-diversity and tree species-richness at 0.1-degree resolution, and investigated drivers for diversity and richness. Using only location, stratified by forest type, as predictor, our spatial model, to the best of our knowledge, provides the most accurate map of tree diversity in Amazonia to date, explaining approximately 70% of the tree diversity and species-richness. Large soil-forest combinations determine a significant percentage of the variation in tree species-richness and tree alpha-diversity in Amazonian forest-plots. We suggest that the size and fragmentation of these systems drive their large-scale diversity patterns and hence local diversity. A model not using location but cumulative water deficit, tree density, and temperature seasonality explains 47% of the tree species-richness in the terra-firme forest in Amazonia. Over large areas across Amazonia, residuals of this relationship are small and poorly spatially structured, suggesting that much of the residual variation may be local. The Guyana Shield area has consistently negative residuals, showing that this area has lower tree species-richness than expected by our models. We provide extensive plot meta-data, including tree density, tree alpha-diversity and tree species-richness results and gridded maps at 0.1-degree resolution
Consistent patterns of common species across tropical tree communities
Trees structure the Earth’s most biodiverse ecosystem, tropical forests. The vast number of tree species presents a formidable challenge to understanding these forests, including their response to environmental change, as very little is known about most tropical tree species. A focus on the common species may circumvent this challenge. Here we investigate abundance patterns of common tree species using inventory data on 1,003,805 trees with trunk diameters of at least 10 cm across 1,568 locations1,2,3,4,5,6 in closed-canopy, structurally intact old-growth tropical forests in Africa, Amazonia and Southeast Asia. We estimate that 2.2%, 2.2% and 2.3% of species comprise 50% of the tropical trees in these regions, respectively. Extrapolating across all closed-canopy tropical forests, we estimate that just 1,053 species comprise half of Earth’s 800 billion tropical trees with trunk diameters of at least 10 cm. Despite differing biogeographic, climatic and anthropogenic histories7, we find notably consistent patterns of common species and species abundance distributions across the continents. This suggests that fundamental mechanisms of tree community assembly may apply to all tropical forests. Resampling analyses show that the most common species are likely to belong to a manageable list of known species, enabling targeted efforts to understand their ecology. Although they do not detract from the importance of rare species, our results open new opportunities to understand the world’s most diverse forests, including modelling their response to environmental change, by focusing on the common species that constitute the majority of their trees
Skeletal muscle dictates the fibrinolytic state after exercise training in overweight men with characteristics of metabolic syndrome.
While there is indisputable evidence supporting the beneficial role of aerobic exercise in reducing cardiovascular risk factors, there are few dose-response studies of this relationship. Increasingly, it is thought that the cardiovascular benefits of exercise are significantly influenced by adaptations within skeletal muscle and its vasculature. However, little is known about the molecular mechanisms underlying these adaptations. To address this need, we initiated a study utilizing longitudinal, microarray-based gene expression profiling of serial skeletal muscle biopsies obtained from the study of targeted risk reduction intervention through defined exercise (STRRIDE). STRRIDE participants were overweight and exhibited symptoms characteristic of the metabolic syndrome that typically precedes type II diabetes such as insulin resistance, abnormal lipids and glucose intolerance. Expression data were statistically filtered and sorted into exercise training-responsive clusters based on gene product knowledge. One such cluster included genes that promote the degradation of fibrin clots such as tissue plasminogen activator (t-PA), connective tissue activation peptide III (CTAP III) and tetranectin. The fibrinolytic activity and protein levels of tetranectin, and t-PA and its endogenous inhibitor PAI-1, were subsequently shown to change significantly in both skeletal muscle and serum in response to exercise training. Our data show that the rigors of exercise directly induce fibrinolytic genes and protein cascades, both within muscle, and in the systemic circulation. This finding is particularly significant given that the metabolic syndrome is an independent risk factor for peripheral vascular disease and thrombotic events within the heart and brain. We conclude that aerobic exercise training induces both local and systemic changes in fibrinolysis and vascular homeostasis that are probably protective against cardiovascular disease
Recommended from our members
Methanol adsorption on Pt(111)
High resolution electron energy loss spectroscopy has been used to study the decomposition of methanol on a Pt(111) surface. Several intermediate states in the decomposition are identified by quenching the sample when reactions occur. At 100 K a set of peaks at 800, 1040, 1350, and 2890 cm/sup -1/ indicates the presence of a multilayer molecularly adsorbed methanol. As the sample is warmed to 130 K peaks develop at 1700 and 2780 cm/sup -1/, suggesting the formation of formaldehyde on the surface. With further heating, peaks grow at 1820 and 2560 cm/sup -1/ due to the formation of a formyl species during the decomposition of methanol over Pt(111). Further heating leads to the final conversion of the surface species to adsorbed CO and carbonaceous residues
- …