6 research outputs found

    Post-transplant bendamustine reduces GvHD while preserving GvL in experimental haploidentical bone marrow transplantation

    No full text
    Advances in haploidentical bone marrow transplantation (h-BMT) have drastically broadened the treatment options for patients requiring BMT. The possibility of significantly reducing the complications resulting from graft-versus-host disease (GvHD) with the administration of post-transplant cyclophosphamide (PT-CY) has substantially improved the efficacy and applicability of T cell-replete h-BMT. However, higher frequency of disease recurrence remains a major challenge in h-BMT with PT-CY. There is a critical need to identify novel strategies to prevent GvHD while sparing the graft-versus-leukaemia (GvL) effect in h-BMT. To this end, we evaluated the impact of bendamustine (BEN), given post-transplant, on GvHD and GvL using clinically relevant murine h-BMT models. We provide results indicating that post-transplant bendamustine (PT-BEN) alleviates GvHD, significantly improving survival, while preserving engraftment and GvL effects. We further document that PT-BEN can mitigate GvHD even in the absence of Treg. Our results also indicate that PT-BEN is less myelo-suppressive than PT-CY, significantly increasing the number and proportion of CD11b(+)Gr-1(hi) cells, while decreasing lymphoid cells. In vitro we observed that BEN enhances the suppressive function of myeloid-derived suppressor cells (MDSCs) while impairing the proliferation of T-and B-cells. These results advocate for the consideration of PT-BEN as a new therapeutic platform for clinical implementation in h-BMT.National Institutes of Health [R01 CA104926]; Hyundai Hope on Wheels; Tee up for Tots; Angel Charity for Children; PANDAVersion of record online: 31 March 2016; 12 month embargo.This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]

    Immunomodulatory Effects of Bendamustine in Hematopoietic Cell Transplantation

    No full text
    Bendamustine (BEN) is a unique alkylating agent with efficacy against a broad range of hematological malignancies, although investigations have only recently started to delve into its immunomodulatory effects. These immunomodulatory properties of BEN in the context of hematopoietic cell transplantation (HCT) are reviewed here. Pre- and post-transplant use of BEN in multiple murine models have consistently resulted in reduced GvHD and enhanced GvL, with significant changes to key immunological cell populations, including T-cells, myeloid derived suppressor cells (MDSCs), and dendritic cells (DCs). Further, in vitro studies find that BEN enhances the suppressive function of MDSCs, skews DCs toward cDC1s, enhances Flt3 expression on DCs, increases B-cell production of IL-10, inhibits STAT3 activation, and suppresses proliferation of T- and B-cells. Overall, BEN has a broad range of immunomodulatory effects that, as they are further elucidated, may be exploited to improve clinical outcomes. As such, clinical trials are currently underway investigating new potential applications of BEN in the setting of allogeneic HCT

    Bendamustine with total body irradiation conditioning yields tolerant T-cells while preserving T-cell-dependent graft-versus-leukemia

    No full text
    Graft-versus-host disease (GvHD) remains a significant impediment to allogeneic hematopoietic cell transplantation (HCT) success, necessitating studies focused on alleviating GvHD, while preserving the graft-versus-leukemia (GvL) effect. Based on our previous studies showing bendamustine with total body irradiation (BEN-TBI) conditioning reduces GvHD compared to the current clinical standard of care cyclophosphamide (CY)-TBI in a murine MHC-mismatched bone marrow transplantation (BMT) model, this study aimed to evaluate the role and fate of donor T-cells following BEN-TBI conditioning. We demonstrate that BEN-TBI reduces GvHD compared to CY-TBI independently of T regulatory cells (Tregs). BEN-TBI conditioned mice have a smaller proportion and less activated donor T-cells, with lower CD47 expression, early post-transplant, but no sustained phenotypic differences in T-cells. In BEN-TBI conditioned mice, donor T-cells gain tolerance specific to host MHC antigens. Though these T-cells are tolerant to host antigens, we demonstrate that BEN-TBI preserves a T-cell-dependent GvL effect. These findings indicate that BEN-TBI conditioning reduces GvHD without compromising GvL, warranting its further investigation as a potentially safer and more efficacious clinical alternative to CY-TBI
    corecore