61 research outputs found

    Long-term in-vitro precision of direct digital X-ray radiogrammetry

    Get PDF
    Digital X-ray radiogrammetry (DXR) calculates peripheral bone mineral density (BMD) from hand radiographs. The short-term precision for direct DXR has been reported to be highly satisfactory. However, long-term precision for this method has not been examined. Thus, the aim of this study was to examine the long-term in-vitro precision for the new direct digital version of DXR. The in-vitro precision for direct DXR was tested with cadaver phantoms on four different X-ray systems at baseline, 3 months, 6 months, and in one machine also at 12 months. At each time point, 31 measurements were performed. The in-vitro longitudinal precision for the four radiographic systems ranged from 0.22 to 0.43% expressed as coefficient of variation (CV%). The smallest detectable difference (SDD) ranged from 0.0034 to 0.0054 g/cm(2). The in vitro long-term precision for direct DXR was comparable to the previous reported short-term in-vitro precision for all tested X-ray systems. These data show that DXR is a stable method for detecting small changes in bone density during 6-12 months of follow-up

    Early changes in bone mineral density measured by digital X-ray radiogrammetry predict up to 20 years radiological outcome in rheumatoid arthritis

    Get PDF
    ABSTRACT: INTRODUCTION: Change in bone mineral density (BMD) in the hand, as evaluated by digital X-ray radiogrammetry (DXR) of the II-IV metacarpal bones, has been suggested to predict future joint damage in rheumatoid arthritis (RA). This study's objective was to investigate if DXR-BMD loss early in the disease predicts development of joint damage in RA patients followed for up to 20 years. METHODS: 183 patients (115 women and 68 men) with early RA (mean disease duration 11 months) included from 1985 to 1989 were followed prospectively (the Lund early RA cohort). Clinical and functional measures were assessed yearly. Joint damage was evaluated according to the Larsen score on radiographs of hands and feet taken in years 0 to 5, 10, 15 and 20. These radiographs were digitized and BMD of the II-IV metacarpal bones was evaluated by DXR (Sectra, Linkoping. Sweden). Early DXR-BMD change rate (bone loss) per year calculated from the first 2 radiographs taken on average 9 months apart (SD 4.8) were available for 135 patients. Mean values of right and left hand were used. RESULTS: Mean early DXR-BMD loss during the first year calculated was -0.023 g/cm2 (SD 0.025). Patients with marked bone loss, i.e. early DXR-BMD loss above the median for the group, had significantly worse progression of joint damage at all examinations during the 20-year period. CONCLUSIONS: Early DXR-BMD progression rate predicted development of joint damage evaluated according to Larsen at year one and further onwards up to 20 years in this cohort of early RA patients

    Bone mineral density by digital X-ray radiogrammetry is strongly decreased and associated with joint destruction in long-standing Rheumatoid Arthritis: a cross-sectional study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The aims were to explore bone mineral density (BMD) by digital X-ray radiogrammetry (DXR) in postmenopausal women with long-lasting rheumatoid arthritis (RA) in relation to dual x-ray absorptiometry (DXA)-BMD, joint destruction by conventional radiographs and disease related variables in a cross-sectional study.</p> <p>Methods</p> <p>Seventy-five postmenopausal women with RA were examined by DXA measuring DXA-BMD of the forearm, total hip and lumbar spine, by scoring joint destruction on plain radiographs by the method of Larsen and by DXR-BMD in metacarpals two to four. The DXR-BMD results of the RA women were compared with an age and sex-matched reference database. A function of DXR-BMD in relation to age and disease duration was created. Associations were investigated by bivariate and multiple linear regression analyses.</p> <p>Results</p> <p>DXR-BMD was strongly decreased in RA patients compared to the reference database (p < 0.001). Calculations showed that DXR-BMD was not markedly influenced the first years after diagnosis of RA, but between approximately 5-10 years of disease there was a steep decline in DXR-BMD which subsequently levelled off. In multiple regression analyses disease duration, CRP and DXR-BMD were independent variables associated with Larsen score (R<sup>2</sup>= 0.64). Larsen score and BMD forearm were independent determinants of DXR-BMD (R<sup>2 </sup>= 0.79).</p> <p>Conclusions</p> <p>DXR-BMD was strongly reduced and associated with both Larsen score and DXA-BMD forearm in these postmenopausal women with RA implying that DXR-BMD is a technique that reflects both the erosive process and bone loss adjacent to affected joints.</p
    • 

    corecore