1,013 research outputs found

    Multilinear tensor regression for longitudinal relational data

    Full text link
    A fundamental aspect of relational data, such as from a social network, is the possibility of dependence among the relations. In particular, the relations between members of one pair of nodes may have an effect on the relations between members of another pair. This article develops a type of regression model to estimate such effects in the context of longitudinal and multivariate relational data, or other data that can be represented in the form of a tensor. The model is based on a general multilinear tensor regression model, a special case of which is a tensor autoregression model in which the tensor of relations at one time point are parsimoniously regressed on relations from previous time points. This is done via a separable, or Kronecker-structured, regression parameter along with a separable covariance model. In the context of an analysis of longitudinal multivariate relational data, it is shown how the multilinear tensor regression model can represent patterns that often appear in relational and network data, such as reciprocity and transitivity.Comment: Published at http://dx.doi.org/10.1214/15-AOAS839 in the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Modeling homophily and stochastic equivalence in symmetric relational data

    Full text link
    This article discusses a latent variable model for inference and prediction of symmetric relational data. The model, based on the idea of the eigenvalue decomposition, represents the relationship between two nodes as the weighted inner-product of node-specific vectors of latent characteristics. This ``eigenmodel'' generalizes other popular latent variable models, such as latent class and distance models: It is shown mathematically that any latent class or distance model has a representation as an eigenmodel, but not vice-versa. The practical implications of this are examined in the context of three real datasets, for which the eigenmodel has as good or better out-of-sample predictive performance than the other two models.Comment: 12 pages, 4 figures, 1 tabl

    Adaptive Higher-order Spectral Estimators

    Full text link
    Many applications involve estimation of a signal matrix from a noisy data matrix. In such cases, it has been observed that estimators that shrink or truncate the singular values of the data matrix perform well when the signal matrix has approximately low rank. In this article, we generalize this approach to the estimation of a tensor of parameters from noisy tensor data. We develop new classes of estimators that shrink or threshold the mode-specific singular values from the higher-order singular value decomposition. These classes of estimators are indexed by tuning parameters, which we adaptively choose from the data by minimizing Stein's unbiased risk estimate. In particular, this procedure provides a way to estimate the multilinear rank of the underlying signal tensor. Using simulation studies under a variety of conditions, we show that our estimators perform well when the mean tensor has approximately low multilinear rank, and perform competitively when the signal tensor does not have approximately low multilinear rank. We illustrate the use of these methods in an application to multivariate relational data.Comment: 29 pages, 3 figure
    • …
    corecore