10 research outputs found

    Disagreement percolation for the hard-sphere model

    Full text link
    Disagreement percolation connects a Gibbs lattice gas and i.i.d. site percolation on the same lattice such that non-percolation implies uniqueness of the Gibbs measure. This work generalises disagreement percolation to the hard-sphere model and the Boolean model. Non-percolation of the Boolean model implies the uniqueness of the Gibbs measure and exponential decay of pair correlations and finite volume errors. Hence, lower bounds on the critical intensity for percolation of the Boolean model imply lower bounds on the critical activity for a (potential) phase transition. These lower bounds improve upon known bounds obtained by cluster expansion techniques. The proof uses a novel dependent thinning from a Poisson point process to the hard-sphere model, with the thinning probability related to a derivative of the free energy

    Shearer's point process, the hard-sphere model and a continuum Lov\'asz Local Lemma

    Get PDF
    A point process is R-dependent, if it behaves independently beyond the minimum distance R. This work investigates uniform positive lower bounds on the avoidance functions of R-dependent simple point processes with a common intensity. Intensities with such bounds are described by the existence of Shearer's point process, the unique R-dependent and R-hard-core point process with a given intensity. This work also presents several extensions of the Lov\'asz Local Lemma, a sufficient condition on the intensity and R to guarantee the existence of Shearer's point process and exponential lower bounds. Shearer's point process shares combinatorial structure with the hard-sphere model with radius R, the unique R-hard-core Markov point process. Bounds from the Lov\'asz Local Lemma convert into lower bounds on the radius of convergence of a high-temperature cluster expansion of the hard-sphere model. This recovers a classic result of Ruelle on the uniqueness of the Gibbs measure of the hard-sphere model via an inductive approach \`a la Dobrushin

    Disagreement percolation for Gibbs ball models

    Get PDF
    We generalise disagreement percolation to Gibbs point processes of balls with varying radii. This allows to establish the uniqueness of the Gibbs measure and exponential decay of pair correlations in the low activity regime by comparison with a sub-critical Boolean model. Applications to the Continuum Random Cluster model and the Quermass-interaction model are presented. At the core of our proof lies an explicit dependent thinning from a Poisson point process to a dominated Gibbs point process.Comment: 23 pages, 0 figure Correction, from the published version, of the proof of Section

    Clique trees of infinite locally finite chordal graphs

    Get PDF
    We investigate clique trees of infinite locally finite chordal graphs. Our main contribution is a bijection between the set of clique trees and the product of local finite families of finite trees. Even more, the edges of a clique tree are in bijection with the edges of the corresponding collection of finite trees. This allows us to enumerate the clique trees of a chordal graph and extend various classic characterisations of clique trees to the infinite setting

    Shearer's point process, the hard-sphere model, and a continuum Lovász local lemma

    Get PDF
    A point process is R-dependent if it behaves independently beyond the minimum distance R. In this paper we investigate uniform positive lower bounds on the avoidance functions of R-dependent simple point processes with a common intensity. Intensities with such bounds are characterised by the existence of Shearer’s point process, the unique R-dependent and R-hard-core point process with a given intensity. We also present several extensions of the Lovász local lemma, a sufficient condition on the intensity andR to guarantee the existence of Shearer’s point process and exponential lower bounds. Shearer’s point process shares a combinatorial structure with the hard-sphere model with radius R, the unique R-hard-core Markov point process. Bounds from the Lovász local lemma convert into lower bounds on the radius of convergence of a high-temperature cluster expansion of the hard-sphere model. This recovers a classic result of Ruelle (1969) on the uniqueness of the Gibbs measure of the hard-sphere model via an inductive approach of Dobrushin (1996)

    Clique trees of infinite locally finite chordal graphs

    Get PDF
    We investigate clique trees of infinite locally finite chordal graphs. Our main contribution is a bijection between the set of clique trees and the product of local finite families of finite trees. Even more, the edges of a clique tree are in bijection with the edges of the corresponding collection of finite trees. This allows us to enumerate the clique trees of a chordal graph and extend various classic characterisations of clique trees to the infinite setting

    Decorrelation of a class of Gibbs particle processes and asymptotic properties of U-statistics

    Get PDF
    We study a stationary Gibbs particle process with deterministically bounded particles on Euclidean space defined in terms of an activity parameter and non-negative interaction potentials of finite range. Using disagreement percolation we prove exponential decay of the correlation functions, provided a dominating Boolean model is subcritical. We also prove this property for the weighted moments of a U-statistic of the process. Under the assumption of a suitable lower bound on the variance, this implies a central limit theorem for such U-statistics of the Gibbs particle process. A byproduct of our approach is a new uniqueness result for Gibbs particle processes

    Decorrelation of a class of Gibbs particle processes and asymptotic properties of U-statistics

    Get PDF
    We study a stationary Gibbs particle process with deterministically bounded particles on Euclidean space defined in terms of an activity parameter and non-negative interaction potentials of finite range. Using disagreement percolation we prove exponential decay of the correlation functions, provided a dominating Boolean model is subcritical. We also prove this property for the weighted moments of a U-statistic of the process. Under the assumption of a suitable lower bound on the variance, this implies a central limit theorem for such U-statistics of the Gibbs particle process. A byproduct of our approach is a new uniqueness result for Gibbs particle processes

    Decorrelation of a class of Gibbs particle processes and asymptotic properties of U-statistics

    No full text
    We study a stationary Gibbs particle process with deterministically bounded particles on Euclidean space defined in terms of an activity parameter and non-negative interaction potentials of finite range. Using disagreement percolation we prove exponential decay of the correlation functions, provided a dominating Boolean model is subcritical. We also prove this property for the weighted moments of a U-statistic of the process. Under the assumption of a suitable lower bound on the variance, this implies a central limit theorem for such U-statistics of the Gibbs particle process. A byproduct of our approach is a new uniqueness result for Gibbs particle processes
    corecore