3 research outputs found

    Shearer's point process, the hard-sphere model, and a continuum Lovász local lemma

    Get PDF
    A point process is R-dependent if it behaves independently beyond the minimum distance R. In this paper we investigate uniform positive lower bounds on the avoidance functions of R-dependent simple point processes with a common intensity. Intensities with such bounds are characterised by the existence of Shearer’s point process, the unique R-dependent and R-hard-core point process with a given intensity. We also present several extensions of the Lovász local lemma, a sufficient condition on the intensity andR to guarantee the existence of Shearer’s point process and exponential lower bounds. Shearer’s point process shares a combinatorial structure with the hard-sphere model with radius R, the unique R-hard-core Markov point process. Bounds from the Lovász local lemma convert into lower bounds on the radius of convergence of a high-temperature cluster expansion of the hard-sphere model. This recovers a classic result of Ruelle (1969) on the uniqueness of the Gibbs measure of the hard-sphere model via an inductive approach of Dobrushin (1996)

    Clique trees of infinite locally finite chordal graphs

    Get PDF
    We investigate clique trees of infinite locally finite chordal graphs. Our main contribution is a bijection between the set of clique trees and the product of local finite families of finite trees. Even more, the edges of a clique tree are in bijection with the edges of the corresponding collection of finite trees. This allows us to enumerate the clique trees of a chordal graph and extend various classic characterisations of clique trees to the infinite setting

    Decorrelation of a class of Gibbs particle processes and asymptotic properties of U-statistics

    Get PDF
    We study a stationary Gibbs particle process with deterministically bounded particles on Euclidean space defined in terms of an activity parameter and non-negative interaction potentials of finite range. Using disagreement percolation we prove exponential decay of the correlation functions, provided a dominating Boolean model is subcritical. We also prove this property for the weighted moments of a U-statistic of the process. Under the assumption of a suitable lower bound on the variance, this implies a central limit theorem for such U-statistics of the Gibbs particle process. A byproduct of our approach is a new uniqueness result for Gibbs particle processes
    corecore