100 research outputs found

    An O(nlogn) algorithm for the two-machine flow shop problem with controllable machine speeds

    Get PDF
    Production Planning;Scheduling;produktieleer/ produktieplanning

    On the P-Coverage Problem on the Real Line

    Get PDF
    In this paper we consider the p-coverage problem on the real line. We first give a detailed description of an algorithm to solve the coverage problem without the upper bound p on the number of open facilities. Then we analyze how the structure of the optimal solution changes if the setup costs of the facilities are all decreased by the same amount. This result is used to develop a parametric approach to the p-coverage problem which runs in o (pn logn) time, n being the number of clients

    Polyhedral techniques in combinatorial optimization II: computations

    Get PDF
    Combinatorial optimization problems appear in many disciplines ranging from management and logistics to mathematics, physics, and chemistry. These problems are usually relatively easy to formulate mathematically, but most of them are computationally hard due to the restriction that a subset of the variables have to take integral values. During the last two decades there has been a remarkable progress in techniques based on the polyhedral description of combinatorial problems. leading to a large increase in the size of several problem types that can be solved. The basic idea behind polyhedral techniques is to derive a good linear formulation of the set of solutions by identifying linear inequalities that can be proved to be necessary in the description of the convex hull of feasible solutions. Ideally we can then solve the problem as a linear programming problem, which can be done efficiently. The purpose of this manuscript is to give an overview of the developments in polyhedral theory, starting with the pioneering work by Dantzig, Fulkerson and Johnson on the traveling salesman problem, and by Gomory on integer programming. We also present some modern applications, and computational experience

    Polyhedral techniques in combinatorial optimization

    Get PDF

    Polyhedral techniques in combinatorial optimization II: computations

    Get PDF

    Polyhedral techniques in combinatorial optimization II: applications and computations

    Get PDF
    The polyhedral approach is one of the most powerful techniques available for solving hard combinatorial optimization problems. The main idea behind the technique is to consider the linear relaxation of the integer combinatorial optimization problem, and try to iteratively strengthen the linear formulation by adding violated strong valid inequalities, i.e., inequalities that are violated by the current fractional solution but satisfied by all feasible solutions, and that define high-dimensional faces, preferably facets, of the convex hull of feasible solutions. If we have the complete description of the convex hull of feasible solutions at hand all extreme points of this formulation are integral, which means that we can solve the problem as a linear programming problem. Linear programming problems are known to be computationally easy. In Part 1 of this article we discuss theoretical aspects of polyhedral techniques. Here we will mainly concentrate on the computational aspects. In particular we discuss how polyhedral results are used in cutting plane algorithms. We also consider a few theoretical issues not treated in Part 1, such as techniques for proving that a certain inequality is facet defining, and that a certain linear formulation gives a complete description of the convex hull of feasible solutions. We conclude the article by briefly mentioning some alternative techniques for solving combinatorial optimization problems

    An O(T3)O(T^3) algorithm for the economic lot-sizing problem with constant capacities

    Get PDF
    We develop an algorithm that solves the constant capacities economic lot-sizing problem with concave production costs and linear holding costs in O(T3)O(T^3) time. The algorithm is based on the standard dynamic programming approach which requires the computation of the minimal costs for all possible subplans of the production plan. Instead of computing these costs in a straightforward manner, we use structural properties of optimal subplans to arrive at a more efficient implementation. Our algorithm improves upon the O(T4)O(T^4) running time of an earlier algorithm
    corecore