2 research outputs found

    Patient-derived organoids can predict response to chemotherapy in metastatic colorectal cancer patients

    No full text
    There is a clear and unmet clinical need for biomarkers to predict responsiveness to chemotherapy for cancer. We developed an in vitro test based on patient-derived tumor organoids (PDOs) from metastatic lesions to identify nonresponders to standard-of-care chemotherapy in colorectal cancer (CRC). In a prospective clinical study, we show the feasibility of generating and testing PDOs for evaluation of sensitivity to chemotherapy. Our PDO test predicted response of the biopsied lesion in more than 80% of patients treated with irinotecan-based therapies without misclassifying patients who would have benefited from treatment. This correlation was specific to irinotecan-based chemotherapy, however, and the PDOs failed to predict outcome for treatment with 5-fluorouracil plus oxaliplatin. Our data suggest that PDOs could be used to prevent cancer patients from undergoing ineffective irinotecan-based chemotherapy.Pattern Recognition and Bioinformatic

    Codon-specific KRAS mutations predict survival benefit of trifluridine/tipiracil in metastatic colorectal cancer

    No full text
    Genomics has greatly improved how patients with cancer are being treated; however, clinical-grade genomic biomarkers for chemotherapies are currently lacking. Using whole-genome analysis of 37 patients with metastatic colorectal cancer (mCRC) treated with the chemotherapy trifluridine/tipiracil (FTD/TPI), we identified KRAS codon G12 (KRASG12) mutations as a potential biomarker of resistance. Next, we collected real-world data of 960 patients with mCRC receiving FTD/TPI and validated that KRASG12 mutations were significantly associated with poor survival, also in analyses restricted to the RAS/RAF mutant subgroup. We next analyzed the data of the global, double-blind, placebo-controlled, phase 3 RECOURSE trial (n = 800 patients) and found that KRASG12 mutations (n = 279) were predictive biomarkers for reduced overall survival (OS) benefit of FTD/TPI versus placebo (unadjusted interaction P = 0.0031, adjusted interaction P = 0.015). For patients with KRASG12 mutations in the RECOURSE trial, OS was not prolonged with FTD/TPI versus placebo (n = 279; hazard ratio (HR) = 0.97; 95% confidence interval (CI) = 0.73–1.20; P = 0.85). In contrast, patients with KRASG13 mutant tumors showed significantly improved OS with FTD/TPI versus placebo (n = 60; HR = 0.29; 95% CI = 0.15–0.55; P < 0.001). In isogenic cell lines and patient-derived organoids, KRASG12 mutations were associated with increased resistance to FTD-based genotoxicity. In conclusion, these data show that KRASG12 mutations are biomarkers for reduced OS benefit of FTD/TPI treatment, with potential implications for approximately 28% of patients with mCRC under consideration for treatment with FTD/TPI. Furthermore, our data suggest that genomics-based precision medicine may be possible for a subset of chemotherapies.Pattern Recognition and Bioinformatic
    corecore