7 research outputs found

    AATF/Che-1-An RNA Binding Protein at the Nexus of DNA Damage Response and Ribosome Biogenesis

    Get PDF
    The DNA damage response (DDR) is a complex signaling network that is activated upon genotoxic stress. It determines cellular fate by either activating cell cycle arrest or initiating apoptosis and thereby ensures genomic stability. The Apoptosis Antagonizing Transcription Factor (AATF/Che-1), an RNA polymerase II-interacting transcription factor and known downstream target of major DDR kinases, affects DDR signaling by inhibiting p53-mediated transcription of pro-apoptotic genes and promoting cell cycle arrest through various pathways instead. Specifically, AATF was shown to inhibit p53 expression at the transcriptional level and repress its pro-apoptotic activity by direct binding to p53 protein and transactivation of anti-apoptotic genes. Solid and hematological tumors of various organs exploit this function by overexpressing AATF. Both copy number gains and high expression levels of AATF were associated with worse prognosis or relapse of malignant tumors. Recently, a number of studies have enabled insights into the molecular mechanisms by which AATF affects both DDR and proliferation. AATF was found to directly localize to sites of DNA damage upon laser ablation and interact with DNA repair proteins. In addition, depletion of AATF resulted in increased DNA damage and decrease of both proliferative activity and genotoxic tolerance. Interestingly, considering the role of ribosomal stress in the regulation of p53, more recent work established AATF as ribosomal RNA binding protein and enabled insights into its role as an important factor for rRNA processing and ribosome biogenesis. This Mini Review summarizes recent findings on AATF and its important role in the DDR, malignancy, and ribosome biogenesis

    Putting the brakes on p53-driven apoptosis

    No full text
    Following genotoxic stress, cells activate a complex, kinase-based signaling network to arrest the cell cycle and initiate DNA repair or apoptosis. The tumor suppressor p53 lies at the heart of this DNA damage response. p53 mediates the transactivation of both cell cycle-regulating and pro-apoptotic clusters of target genes. However, it remains incompletely understood which signaling molecules dictate the choice between these two opposing p53-dependent cellular outcomes. Over recent years, numerous regulatory mechanisms impacting on the cellular outcome of p53 signaling have been described. However, no single dominant mechanism has thus far been identified to regulate the cellular choice between p53-driven apoptosis or senescence. The transcriptional regulator AATF has recently emerged as a novel factor impacting on the cellular outcome of the p53 response. Upon genotoxic stress, cytoplasmic pools of MRLC-bound AATF are phosphorylated through the p38MAPK/MK2 checkpoint kinase complex. This AATF phosphorylation results in the disruption of cytoplasmic MRLC3: AATF complexes followed by rapid nuclear localization of AATF. Once in the nucleus, AATF binds to the PUMA, BAX and BAK promoters to repress the DNA damage-induced expression of these pro-apoptotic p53 target genes. Depletion of AATF in tumor cells results in a dramatically enhanced response to DNA damaging chemotherapeutics, both in vitro and in vivo. Furthermore, focal copy number gains at the AATF locus in neuroblastoma correlate with adverse prognosis and reduced overall survival in this typically p53-proficient malignancy. These data identify the p38/MK2/AATF signaling pathway as a critical repressor of p53-driven apoptosis in tumor cells and implicate this signaling cascade as a novel target for chemotherapy-sensitizing therapeutic efforts

    Inactivation of Apoptosis Antagonizing Transcription Factor in tubular epithelial cells induces accumulation of DNA damage and nephronophthisis

    No full text
    Recent human genetic studies have suggested an intriguing link between ciliary signaling defects and altered DNA damage responses in nephronophthisis (NPH) and related ciliopathies. However, the molecular mechanism and the role of altered DNA damage response in kidney degeneration and fibrosis have remained elusive. We recently identified the kinase-regulated DNA damage response target Apoptosis Antagonizing Transcription Factor (AATF) as a master regulator of the p53 response. Here, we characterized the phenotype of mice with genetic deletion of Aatf in tubular epithelial cells. Mice were born without an overt phenotype, but gradually developed progressive kidney disease. Histology was notable for severe tubular atrophy and interstitial fibrosis as well as cysts at the corticomedullary junction, hallmarks of human nephronophthisis. Aatf deficiency caused ciliary defects as well as an accumulation of DNA double strand breaks. In addition to its role as a p53 effector, we found that AATF suppressed RNA: DNA hybrid (R loop) formation, a known cause of DNA double strand breaks, and enabled DNA double strand break repair in vitro. Genome-wide transcriptomic analysis of Aatf deficient tubular epithelial cells revealed several deregulated pathways that could contribute to the nephronophthisis phenotype, including alterations in the inflammatory response and anion transport. These results suggest that AATF is a regulator of primary cilia and a modulator of the DNA damage response, connecting two pathogenetic mechanisms in nephronophthisis and related ciliopathies

    AATF suppresses apoptosis, promotes proliferation and is critical for Kras-driven lung cancer

    No full text
    A fundamental principle in malignant tranformation is the ability of cancer cells to escape the naturally occurring cellintrinsic responses to DNA damage. Tumors progress despite the accumulation of DNA lesions. However, the underlying mechanisms of this tolerance to genotoxic stress are still poorly characterized. Here, we show that replication stress occurs in Kras-driven murine lung adenocarcinomas, as well as in proliferating murine embryonic and adult tissues. We identify the transcriptional regulator AATF/CHE-1 as a key molecule to sustain proliferative tissues and tumor progression in parts by inhibiting p53-driven apoptosis in vivo. In an autochthonous Kras-driven lung adenocarcinoma model, deletion of Aatf delayed lung cancer formation predominantly in a p53-dependent manner. Moreover, targeting Aatf in existing tumors through a dual recombinase strategy caused a halt in tumor progression. Taken together, these data suggest that AATF may serve as a drug target to treat KRAS-driven malignancies

    The RNA-Protein Interactome of Differentiated Kidney Tubular Epithelial Cells

    No full text
    Background RNA-binding proteins (RBPs) are fundamental regulators of cellular biology that affect all steps in the generation and processing of RNA molecules. Recent evidence suggests that regulation of RBPs that modulate both RNA stability and translation may have a profound effect on the proteome. However, regulation of RBPs in clinically relevant experimental conditions has not been studied systematically. Methods We used RNA interactome capture, a method for the global identification of RBPs to characterize the global RNA-binding proteome (RBPome) associated with polyA-tailed RNA species in murine ciliated epithelial cells of the inner medullary collecting duct. To study regulation of RBPs in a clinically relevant condition, we analyzed hypoxia-associated changes of the RBPome. Results We identified >1000 RBPs that had been previously found using other systems. In addition, we found a number of novel RBPs not identified by previous screens using mouse or human cells, suggesting that these proteins may be specific RBPs in differentiated kidney epithelial cells. We also found quantitative differences in RBP-binding to mRNA that were associated with hypoxia versus normoxia. Conclusions These findings demonstrate the regulation of RBPs through environmental stimuli and provide insight into the biology of hypoxia-response signaling in epithelial cells in the kidney. A repository of the RBPome and proteome in kidney tubular epithelial cells, derived from our findings, is freely accessible online, and may contribute to a better understanding of the role of RNA-protein interactions in kidney tubular epithelial cells, including the response of these cells to hypoxia

    A protein-RNA interaction atlas of the ribosome biogenesis factor AATF

    No full text
    AATF is a central regulator of the cellular outcome upon p53 activation, a finding that has primarily been attributed to its function as a transcription factor. Recent data showed that AATF is essential for ribosome biogenesis and plays a role in rRNA maturation. AATF has been implicated to fulfil this role through direct interaction with rRNA and was identified in several RNA-interactome capture experiments. Here, we provide a first comprehensive analysis of the RNA bound by AATF using CLIP-sequencing. Interestingly, this approach shows predominant binding of the 45S pre-ribosomal RNA precursor molecules. Furthermore, AATF binds to mRNAs encoding for ribosome biogenesis factors as well as snoRNAs. These findings are complemented by an in-depth analysis of the protein interactome of AATF containing a large set of proteins known to play a role in rRNA maturation with an emphasis on the protein-RNA-complexes known to be required for the generation of the small ribosomal subunit (SSU). In line with this finding, the binding sites of AATF within the 45S rRNA precursor localize in close proximity to the SSU cleavage sites. Consequently, our multilayer analysis of the protein-RNA interactome of AATF reveals this protein to be an important hub for protein and RNA interactions involved in ribosome biogenesis

    AATF/Che-1 acts as a phosphorylation-dependent molecular modulator to repress p53-driven apoptosis

    No full text
    Following genotoxic stress, cells activate a complex signalling network to arrest the cell cycle and initiate DNA repair or apoptosis. The tumour suppressor p53 lies at the heart of this DNA damage response. However, it remains incompletely understood, which signalling molecules dictate the choice between these different cellular outcomes. Here, we identify the transcriptional regulator apoptosis-antagonizing transcription factor (AATF)/Che-1 as a critical regulator of the cellular outcome of the p53 response. Upon genotoxic stress, AATF is phosphorylated by the checkpoint kinase MK2. Phosphorylation results in the release of AATF from cytoplasmic MRLC3 and subsequent nuclear translocation where AATF binds to the PUMA, BAX and BAK promoter regions to repress p53-driven expression of these pro-apoptotic genes. In xenograft experiments, mice exhibit a dramatically enhanced response of AATF-depleted tumours following genotoxic chemotherapy with adriamycin. The exogenous expression of a phospho-mimicking AATF point mutant results in marked adriamycin resistance in vivo. Nuclear AATF enrichment appears to be selected for in p53-proficient endometrial cancers. Furthermore, focal copy number gains at the AATF locus in neuroblastoma, which is known to be almost exclusively p53-proficient, correlate with an adverse prognosis and reduced overall survival. These data identify the p38/MK2/AATF signalling module as a critical repressor of p53-driven apoptosis and commend this pathway as a target for DNA damage-sensitizing therapeutic regimens. The EMBO Journal (2012) 31, 3961-3975. doi:10.1038/emboj.2012.236; Published online 21 August 201
    corecore