3 research outputs found

    Hydrogen-powered aviation in Germany: A macroeconomic perspective and methodological approach of fuel supply chain integration into an economy-wide dataset

    Get PDF
    The hydrogen (H2) momentum affects the aviation sector. However, a macroeconomic consideration is currently missing. To address this research gap, the paper derives a methodology for evaluating macroeconomic effects of H2 in aviation and applies this approach to Germany. Three goals are addressed: (1) Construction of a German macroeconomic database. (2) Translation of H2 supply chains to the system of national accounts. (3) Implementation of H2-powered aviation into the macroeconomic data framework. The article presents an economy-wide database for analyzing H2-powered aviation. Subsequently, the paper highlights three H2 supply pathways, provides an exemplary techno-economic cost break-down for ten H2 components and translates them into the data framework. Eight relevant macroeconomic sectors for H2-powered aviation are identified and quantified. Overall, the paper contributes on a suitable foundation to apply the macroeconomic dataset and to conduct macroeconomic analyses on H2-powered aviation. Finally, the article highlights further research potential on job effects related to future H2 demand

    Refueling of LH2 Aircraft—Assessment of Turnaround Procedures and Aircraft Design Implication

    Get PDF
    Green liquid hydrogen (LH2) could play an essential role as a zero-carbon aircraft fuel to reach long-term sustainable aviation. Excluding challenges such as electrolysis, transportation and use of renewable energy in setting up hydrogen (H2) fuel infrastructure, this paper investigates the interface between refueling systems and aircraft, and the impacts on fuel distribution at the airport. Furthermore, it provides an overview of key technology design decisions for LH2 refueling procedures and their effects on the turnaround times as well as on aircraft design. Based on a comparison to Jet A-1 refueling, new LH2 refueling procedures are described and evaluated. Process steps under consideration are connecting/disconnecting, purging, chill-down, and refueling. The actual refueling flow of LH2 is limited to a simplified Reynolds term of v · d = 2.35m2/s. A mass flow rate of 20 kg/s is reached with an inner hose diameter of 152.4mm. The previous and subsequent processes (without refueling) require 9 min with purging and 6 min without purging. For the assessment of impacts on LH2 aircraft operation, process changes on the level of ground support equipment are compared to current procedures with Jet A-1. The technical challenges at the airport for refueling trucks as well as pipeline systems and dispensers are presented. In addition to the technological solutions, explosion protection as applicable safety regulations are analyzed, and the overall refueling process is validated. The thermodynamic properties of LH2 as a real, compressible fluid are considered to derive implications for airport-side infrastructure. The advantages and disadvantages of a subcooled liquid are evaluated, and cost impacts are elaborated. Behind the airport storage tank, LH2 must be cooled to at least 19K to prevent two-phase phenomena and a mass flow reduction during distribution. Implications on LH2 aircraft design are investigated by understanding the thermodynamic properties, including calculation methods for the aircraft tank volume, and problems such as cavitation and two-phase flows. In conclusion, the work presented shows that LH2 refueling procedure is feasible, compliant with the applicable explosion protection standards and hence does not impact the turnaround procedure. A turnaround time comparison shows that refueling with LH2 in most cases takes less time than with Jet A-1. The turnaround at the airport can be performed by a fuel truck or a pipeline dispenser system without generating direct losses, i.e., venting to the atmosphere. © 2022 by the authors.Licensee MDPI, Basel, Switzerland

    Conceptual Design of Operation Strategies for Hybrid Electric Aircraft

    Get PDF
    Ambitious targets to reduce emissions caused by aviation in the light of an expected ongoing rise of the air transport demand in the future drive the research of propulsion systems with lower CO2 emissions. Regional hybrid electric aircraft (HEA) powered by conventional gas turbines and battery powered electric motors are investigated to test hybrid propulsion operation strategies. Especially the role of the battery within environmentally friendly concepts with significantly reduced carbon footprint is analyzed. Thus, a new simulation approach for HEA is introduced. The main findings underline the importance of choosing the right power-to-energy-ratio of a battery according to the flight mission. The gravimetric energy and power density of the electric storages determine the technologically feasibility of hybrid concepts. Cost competitive HEA configurations are found, but do not promise the targeted CO2 emission savings, when the well-to-wheel system is regarded with its actual costs. Sensitivity studies are used to determine external levers that favor the profitability of HEA
    corecore