2,238 research outputs found
Methodological tests of the use of trace elements as tracers to assess root activity
peer-reviewedN.J.H. was funded by the Irish Research Council, co-funded by Marie Curie Actions under FP7. The field experiments A, B and G were supported by the European Community's Seventh Framework Programme (FP7/2007-2013) under the grant agreements FP7-266018 (AnimalChange) and FP7- 244983 (MultiSward). Experiment F was supported by the German Science Foundation (FOR 456).Background and aims
There is increasing interest in how resource utilisation in grassland ecosystems is affected by changes in plant diversity and abiotic conditions. Research to date has mainly focussed on aboveground responses and there is limited insight into belowground processes. The aim of this study was to test a number of assumptions for the valid use of the trace elements caesium, lithium, rubidium and strontium as tracers to assess the root activity of several grassland species.
Methods
We carried out a series of experiments addressing the reliability of soil labelling, injection density, incubation time, application rate and the comparability of different tracers in a multiple tracer method.
Results
The results indicate that it is possible to achieve a reliable labelling of soil depths. Tracer injection density affected the variability but not the mean level of plant tracer concentrations. Tracer application rates should be based on pilot studies, because of site- and species-specific responses. The trace elements did not meet prerequisites to be used in a multiple tracer method.
Conclusions
The use of trace elements as tracers is potentially a very useful tool to give insight into plant root activity at different soil depths. This work highlights some of the main benefits and pitfalls of the method and provides specific recommendations to assist the design of tracer experiments and interpretation of the results.N.J.H. was funded by the Irish Research Council, co-funded by Marie Curie Actions under FP7. The field experiments A, B and G were supported by the European Community's Seventh Framework Programme (FP7/2007-2013) under the grant agreements FP7-266018 (AnimalChange) and FP7- 244983 (MultiSward). Experiment F was supported by the German Science Foundation (FOR 456).European Unio
The Electron Glass in a Switchable Mirror: Relaxation, Aging and Universality
The rare earth hydride YH can be tuned through the
metal-insulator transition both by changing and by illumination with
ultraviolet light. The transition is dominated by strong electron-electron
interactions, with transport in the insulator sensitive to both a Coulomb gap
and persistent quantum fluctuations. Via a systematic variation of UV
illumination time, photon flux, Coulomb gap depth, and temperature, we
demonstrate that polycrystalline YH serves as a model system for
studying the properties of the interacting electron glass. Prominent among its
features are logarithmic relaxation, aging, and universal scaling of the
conductivity
Measuring the Reduced Shear
Neglecting the second order corrections in weak lensing measurements can lead
to a few percent uncertainties on cosmic shears, and becomes more important for
cluster lensing mass reconstructions. Existing methods which claim to measure
the reduced shears are not necessarily accurate to the second order when a
point spread function (PSF) is present. We show that the method of Zhang (2008)
exactly measures the reduced shears at the second order level in the presence
of PSF. A simple theorem is provided for further confirming our calculation,
and for judging the accuracy of any shear measurement method at the second
order based on its properties at the first order. The method of Zhang (2008) is
well defined mathematically. It does not require assumptions on the
morphologies of galaxies and the PSF. To reach a sub-percent level accuracy,
the CCD pixel size is required to be not larger than 1/3 of the Full Width at
Half Maximum (FWHM) of the PSF. Using a large ensemble (> 10^7) of mock
galaxies of unrestricted morphologies, we find that contaminations to the shear
signals from the noise of background photons can be removed in a well defined
way because they are not correlated with the source shapes. The residual shear
measurement errors due to background noise are consistent with zero at the
sub-percent level even when the amplitude of such noise reaches about 1/10 of
the source flux within the half-light radius of the source. This limit can in
principle be extended further with a larger galaxy ensemble in our simulations.
On the other hand, the source Poisson noise remains to be a cause of systematic
errors. For a sub-percent level accuracy, our method requires the amplitude of
the source Poisson noise to be less than 1/80 ~ 1/100 of the source flux within
the half-light radius of the source, corresponding to collecting roughly 10^4
source photons.Comment: 18 pages, 3 figures, 4 tables, minor changes from the previous
versio
Energy- and charge-state-resolved spectrometry of tin laser-produced plasma using a retarding field energy analyzer
We present a method to obtain the individual charge-state-dependent kinetic-energy distributions of tin ions emanating from a laser-produced plasma from their joint overlapping energy distributions measured by means of a retarding field energy analyzer (RFA). The method of extracting charge state specific parameters from the ion signals is described mathematically, and reinforced with experimental results. The absolute charge-state-resolved ion energy distributions is obtained from ns-pulse Nd:YAG-laser-produced microdroplet tin plasmas in a setting relevant for state-of-the-art extreme ultraviolet nanolithography
Cluster Masses Accounting for Structure along the Line of Sight
Weak gravitational lensing of background galaxies by foreground clusters
offers an excellent opportunity to measure cluster masses directly without
using gas as a probe. One source of noise which seems difficult to avoid is
large scale structure along the line of sight. Here I show that, by using
standard map-making techniques, one can minimize the deleterious effects of
this noise. The resulting uncertainties on cluster masses are significantly
smaller than when large scale structure is not properly accounted for, although
still larger than if it was absent altogether.Comment: 5 pages, 5 figure
Double Lobed Radio Quasars from the Sloan Digital Sky Survey
We have combined a sample of 44984 quasars, selected from the Sloan Digital
Sky Survey (SDSS) Data Release 3, with the FIRST radio survey. Using a novel
technique where the optical quasar position is matched to the complete radio
environment within 450", we are able to characterize the radio morphological
make-up of what is essentially an optically selected quasar sample, regardless
of whether the quasar (nucleus) itself has been detected in the radio. About
10% of the quasar population have radio cores brighter than 0.75 mJy at 1.4
GHz, and 1.7% have double lobed FR2-like radio morphologies. About 75% of the
FR2 sources have a radio core (> 0.75 mJy). A significant fraction (~40%) of
the FR2 quasars are bent by more than 10 degrees, indicating either
interactions of the radio plasma with the ICM or IGM. We found no evidence for
correlations with redshift among our FR2 quasars: radio lobe flux densities and
radio source diameters of the quasars have similar distributions at low (mean
0.77) and high (mean 2.09) redshifts. Using a smaller high reliability FR2
sample of 422 quasars and two comparison samples of radio-quiet and non-FR2
radio-loud quasars, matched in their redshift distributions, we constructed
composite optical spectra from the SDSS spectroscopic data. Based on these
spectra we can conclude that the FR2 quasars have stronger high-ionization
emission lines compared to both the radio quiet and non-FR2 radio loud sources.
This is consistent with the notion that the emission lines are brightened by
ongoing shock ionization of ambient gas in the quasar host as the radio source
expands.Comment: 20 pages, 10 figures - some of which have been reduced in quality /
size. Accepted for publication in the Astronomical Journa
Probing the distribution of dark matter in the Abell 901/902 supercluster with weak lensing
We present a weak shear analysis of the Abell 901/902 supercluster, composed
of three rich clusters at z=0.16. Using a deep R-band image from the 0.5 x 0.5
degree MPG/ESO Wide Field Imager together with supplementary B-band
observations, we build up a comprehensive picture of the light and mass
distributions in this region. We find that, on average, the light from the
early-type galaxies traces the dark matter fairly well, although one cluster is
a notable exception to this rule. The clusters themselves exhibit a range of
mass-to-light (M/L) ratios, X-ray properties, and galaxy populations. We
attempt to model the relation between the total mass and the light from the
early-type galaxies with a simple scale-independent linear biasing model. We
find M/L_B=130h for the early type galaxies with zero stochasticity, which, if
taken at face value, would imply Omega_m < 0.1. However, this linear relation
breaks down on small scales and on scales equivalent to the average cluster
separation (approximately 1 Mpc), demonstrating that a single M/L ratio is not
adequate to fully describe the mass-light relation in the supercluster. Rather,
the scatter in M/L ratios observed for the clusters supports a model
incorporating non-linear biasing or stochastic processes. Finally, there is a
clear detection of filamentary structure connecting two of the clusters, seen
in both the galaxy and dark matter distributions, and we discuss the effects of
cluster-cluster and cluster-filament interactions as a means to reconcile the
disparate descriptions of the supercluster.Comment: 23 pages, 19 figures. ApJ, accepte
Constraining the expansion history of the universe from the red shift evolution of cosmic shear
We present a quantitative analysis of the constraints on the total equation
of state parameter that can be obtained from measuring the red shift evolution
of the cosmic shear. We compare the constraints that can be obtained from
measurements of the spin two angular multipole moments of the cosmic shear to
those resulting from the two dimensional and three dimensional power spectra of
the cosmic shear. We find that if the multipole moments of the cosmic shear are
measured accurately enough for a few red shifts the constraints on the dark
energy equation of state parameter improve significantly compared to those that
can be obtained from other measurements.Comment: 17 pages, 4 figure
CLASS B0827+525: `Dark lens' or binary radio-loud quasar?
We present radio, optical, near-infrared and spectroscopic observations of
the source B0827+525. We consider this source as the best candidate from the
Cosmic Lens All-Sky Survey (CLASS) for a `dark lens' system or binary
radio-loud quasar. The system consists of two radio components with somewhat
different spectral indices, separated by 2.815 arcsec. VLBA observations show
that each component has substructure on a scale of a few mas. A deep K-band
exposure with the W.M.Keck-II Telescope reveals emission near both radio
components. The K-band emission of the weaker radio component appears extended,
whereas the emission from the brighter radio component is consistent with a
point source. Hubble Space Telescope F160W-band observations with the NICMOS
instrument confirms this. A redshift of 2.064 is found for the brighter
component, using the LRIS instrument on the W.M.Keck-II Telescope. The
probability that B0827+525 consists of two unrelated compact flat-spectrum
radio sources is ~3%, although the presence of similar substructure in both
component might reduce this.
We discuss two scenarios to explain this system: (i) CLASS B0827+525 is a
`dark lens' system or (ii) B0827+525 is a binary radio-loud quasar. B0827+525
has met all criteria that thus far have in 100% of the cases confirmed a source
as an indisputable gravitational lens system. Despite this, no lens galaxy has
been detected with m_F160W<=23 mag. Hence, we might have found the first binary
radio-loud quasar. At this moment, however, we feel that the `dark lens'
hypothesis cannot yet be fully excluded.Comment: 9 pages, 6 figures; Accepted for publication in Astronomy &
Astrophysics; Full-res. images 1 and 3 can be obtained from L.V.E.
- …