2,238 research outputs found

    Methodological tests of the use of trace elements as tracers to assess root activity

    Get PDF
    peer-reviewedN.J.H. was funded by the Irish Research Council, co-funded by Marie Curie Actions under FP7. The field experiments A, B and G were supported by the European Community's Seventh Framework Programme (FP7/2007-2013) under the grant agreements FP7-266018 (AnimalChange) and FP7- 244983 (MultiSward). Experiment F was supported by the German Science Foundation (FOR 456).Background and aims There is increasing interest in how resource utilisation in grassland ecosystems is affected by changes in plant diversity and abiotic conditions. Research to date has mainly focussed on aboveground responses and there is limited insight into belowground processes. The aim of this study was to test a number of assumptions for the valid use of the trace elements caesium, lithium, rubidium and strontium as tracers to assess the root activity of several grassland species. Methods We carried out a series of experiments addressing the reliability of soil labelling, injection density, incubation time, application rate and the comparability of different tracers in a multiple tracer method. Results The results indicate that it is possible to achieve a reliable labelling of soil depths. Tracer injection density affected the variability but not the mean level of plant tracer concentrations. Tracer application rates should be based on pilot studies, because of site- and species-specific responses. The trace elements did not meet prerequisites to be used in a multiple tracer method. Conclusions The use of trace elements as tracers is potentially a very useful tool to give insight into plant root activity at different soil depths. This work highlights some of the main benefits and pitfalls of the method and provides specific recommendations to assist the design of tracer experiments and interpretation of the results.N.J.H. was funded by the Irish Research Council, co-funded by Marie Curie Actions under FP7. The field experiments A, B and G were supported by the European Community's Seventh Framework Programme (FP7/2007-2013) under the grant agreements FP7-266018 (AnimalChange) and FP7- 244983 (MultiSward). Experiment F was supported by the German Science Foundation (FOR 456).European Unio

    The Electron Glass in a Switchable Mirror: Relaxation, Aging and Universality

    Full text link
    The rare earth hydride YH3δ_{3-\delta} can be tuned through the metal-insulator transition both by changing δ\delta and by illumination with ultraviolet light. The transition is dominated by strong electron-electron interactions, with transport in the insulator sensitive to both a Coulomb gap and persistent quantum fluctuations. Via a systematic variation of UV illumination time, photon flux, Coulomb gap depth, and temperature, we demonstrate that polycrystalline YH3δ_{3-\delta} serves as a model system for studying the properties of the interacting electron glass. Prominent among its features are logarithmic relaxation, aging, and universal scaling of the conductivity

    Measuring the Reduced Shear

    Full text link
    Neglecting the second order corrections in weak lensing measurements can lead to a few percent uncertainties on cosmic shears, and becomes more important for cluster lensing mass reconstructions. Existing methods which claim to measure the reduced shears are not necessarily accurate to the second order when a point spread function (PSF) is present. We show that the method of Zhang (2008) exactly measures the reduced shears at the second order level in the presence of PSF. A simple theorem is provided for further confirming our calculation, and for judging the accuracy of any shear measurement method at the second order based on its properties at the first order. The method of Zhang (2008) is well defined mathematically. It does not require assumptions on the morphologies of galaxies and the PSF. To reach a sub-percent level accuracy, the CCD pixel size is required to be not larger than 1/3 of the Full Width at Half Maximum (FWHM) of the PSF. Using a large ensemble (> 10^7) of mock galaxies of unrestricted morphologies, we find that contaminations to the shear signals from the noise of background photons can be removed in a well defined way because they are not correlated with the source shapes. The residual shear measurement errors due to background noise are consistent with zero at the sub-percent level even when the amplitude of such noise reaches about 1/10 of the source flux within the half-light radius of the source. This limit can in principle be extended further with a larger galaxy ensemble in our simulations. On the other hand, the source Poisson noise remains to be a cause of systematic errors. For a sub-percent level accuracy, our method requires the amplitude of the source Poisson noise to be less than 1/80 ~ 1/100 of the source flux within the half-light radius of the source, corresponding to collecting roughly 10^4 source photons.Comment: 18 pages, 3 figures, 4 tables, minor changes from the previous versio

    Energy- and charge-state-resolved spectrometry of tin laser-produced plasma using a retarding field energy analyzer

    Get PDF
    We present a method to obtain the individual charge-state-dependent kinetic-energy distributions of tin ions emanating from a laser-produced plasma from their joint overlapping energy distributions measured by means of a retarding field energy analyzer (RFA). The method of extracting charge state specific parameters from the ion signals is described mathematically, and reinforced with experimental results. The absolute charge-state-resolved ion energy distributions is obtained from ns-pulse Nd:YAG-laser-produced microdroplet tin plasmas in a setting relevant for state-of-the-art extreme ultraviolet nanolithography

    Cluster Masses Accounting for Structure along the Line of Sight

    Full text link
    Weak gravitational lensing of background galaxies by foreground clusters offers an excellent opportunity to measure cluster masses directly without using gas as a probe. One source of noise which seems difficult to avoid is large scale structure along the line of sight. Here I show that, by using standard map-making techniques, one can minimize the deleterious effects of this noise. The resulting uncertainties on cluster masses are significantly smaller than when large scale structure is not properly accounted for, although still larger than if it was absent altogether.Comment: 5 pages, 5 figure

    Double Lobed Radio Quasars from the Sloan Digital Sky Survey

    Full text link
    We have combined a sample of 44984 quasars, selected from the Sloan Digital Sky Survey (SDSS) Data Release 3, with the FIRST radio survey. Using a novel technique where the optical quasar position is matched to the complete radio environment within 450", we are able to characterize the radio morphological make-up of what is essentially an optically selected quasar sample, regardless of whether the quasar (nucleus) itself has been detected in the radio. About 10% of the quasar population have radio cores brighter than 0.75 mJy at 1.4 GHz, and 1.7% have double lobed FR2-like radio morphologies. About 75% of the FR2 sources have a radio core (> 0.75 mJy). A significant fraction (~40%) of the FR2 quasars are bent by more than 10 degrees, indicating either interactions of the radio plasma with the ICM or IGM. We found no evidence for correlations with redshift among our FR2 quasars: radio lobe flux densities and radio source diameters of the quasars have similar distributions at low (mean 0.77) and high (mean 2.09) redshifts. Using a smaller high reliability FR2 sample of 422 quasars and two comparison samples of radio-quiet and non-FR2 radio-loud quasars, matched in their redshift distributions, we constructed composite optical spectra from the SDSS spectroscopic data. Based on these spectra we can conclude that the FR2 quasars have stronger high-ionization emission lines compared to both the radio quiet and non-FR2 radio loud sources. This is consistent with the notion that the emission lines are brightened by ongoing shock ionization of ambient gas in the quasar host as the radio source expands.Comment: 20 pages, 10 figures - some of which have been reduced in quality / size. Accepted for publication in the Astronomical Journa

    Probing the distribution of dark matter in the Abell 901/902 supercluster with weak lensing

    Full text link
    We present a weak shear analysis of the Abell 901/902 supercluster, composed of three rich clusters at z=0.16. Using a deep R-band image from the 0.5 x 0.5 degree MPG/ESO Wide Field Imager together with supplementary B-band observations, we build up a comprehensive picture of the light and mass distributions in this region. We find that, on average, the light from the early-type galaxies traces the dark matter fairly well, although one cluster is a notable exception to this rule. The clusters themselves exhibit a range of mass-to-light (M/L) ratios, X-ray properties, and galaxy populations. We attempt to model the relation between the total mass and the light from the early-type galaxies with a simple scale-independent linear biasing model. We find M/L_B=130h for the early type galaxies with zero stochasticity, which, if taken at face value, would imply Omega_m < 0.1. However, this linear relation breaks down on small scales and on scales equivalent to the average cluster separation (approximately 1 Mpc), demonstrating that a single M/L ratio is not adequate to fully describe the mass-light relation in the supercluster. Rather, the scatter in M/L ratios observed for the clusters supports a model incorporating non-linear biasing or stochastic processes. Finally, there is a clear detection of filamentary structure connecting two of the clusters, seen in both the galaxy and dark matter distributions, and we discuss the effects of cluster-cluster and cluster-filament interactions as a means to reconcile the disparate descriptions of the supercluster.Comment: 23 pages, 19 figures. ApJ, accepte

    Constraining the expansion history of the universe from the red shift evolution of cosmic shear

    Full text link
    We present a quantitative analysis of the constraints on the total equation of state parameter that can be obtained from measuring the red shift evolution of the cosmic shear. We compare the constraints that can be obtained from measurements of the spin two angular multipole moments of the cosmic shear to those resulting from the two dimensional and three dimensional power spectra of the cosmic shear. We find that if the multipole moments of the cosmic shear are measured accurately enough for a few red shifts the constraints on the dark energy equation of state parameter improve significantly compared to those that can be obtained from other measurements.Comment: 17 pages, 4 figure

    CLASS B0827+525: `Dark lens' or binary radio-loud quasar?

    Get PDF
    We present radio, optical, near-infrared and spectroscopic observations of the source B0827+525. We consider this source as the best candidate from the Cosmic Lens All-Sky Survey (CLASS) for a `dark lens' system or binary radio-loud quasar. The system consists of two radio components with somewhat different spectral indices, separated by 2.815 arcsec. VLBA observations show that each component has substructure on a scale of a few mas. A deep K-band exposure with the W.M.Keck-II Telescope reveals emission near both radio components. The K-band emission of the weaker radio component appears extended, whereas the emission from the brighter radio component is consistent with a point source. Hubble Space Telescope F160W-band observations with the NICMOS instrument confirms this. A redshift of 2.064 is found for the brighter component, using the LRIS instrument on the W.M.Keck-II Telescope. The probability that B0827+525 consists of two unrelated compact flat-spectrum radio sources is ~3%, although the presence of similar substructure in both component might reduce this. We discuss two scenarios to explain this system: (i) CLASS B0827+525 is a `dark lens' system or (ii) B0827+525 is a binary radio-loud quasar. B0827+525 has met all criteria that thus far have in 100% of the cases confirmed a source as an indisputable gravitational lens system. Despite this, no lens galaxy has been detected with m_F160W<=23 mag. Hence, we might have found the first binary radio-loud quasar. At this moment, however, we feel that the `dark lens' hypothesis cannot yet be fully excluded.Comment: 9 pages, 6 figures; Accepted for publication in Astronomy & Astrophysics; Full-res. images 1 and 3 can be obtained from L.V.E.
    corecore