39 research outputs found

    The effect of an isotopic non-equilibrium plasma on electron temperature measurements

    Get PDF
    Electron temperatures determined by electrostatic probe, diffuse resonance, and radar backscatter techniques in an isotropic two temperature plasma are presented. Plasma models corresponding to the addition of a minor component of energetic electrons, and models corresponding to a process that cools a fraction of the ionospheric electrons are considered. The diffuse resonance temperature is found to lie between the probe and radar backscatter temperatures. The isotropic models corresponding to the addition of energetic electrons cannot support the reported discrepancies between radio wave and probe electron temperature measurements. Temperature differences similar to the observed differences can be produced by models with a fraction of the electrons at a temperature cooler than that of the main component of electrons

    Mechanistic Insights into a Novel Exporter-Importer System of Mycobacterium tuberculosis Unravel Its Role in Trafficking of Iron

    Get PDF
    Elucidation of the basic mechanistic and biochemical principles underlying siderophore mediated iron uptake in mycobacteria is crucial for targeting this principal survival strategy vis-à-vis virulence determinants of the pathogen. Although, an understanding of siderophore biosynthesis is known, the mechanism of their secretion and uptake still remains elusive.Here, we demonstrate an interplay among three iron regulated Mycobacterium tuberculosis (M.tb) proteins, namely, Rv1348 (IrtA), Rv1349 (IrtB) and Rv2895c in export and import of M.tb siderophores across the membrane and the consequent iron uptake. IrtA, interestingly, has a fused N-terminal substrate binding domain (SBD), representing an atypical subset of ABC transporters, unlike IrtB that harbors only the permease and ATPase domain. SBD selectively binds to non-ferrated siderophores whereas Rv2895c exhibits relatively higher affinity towards ferrated siderophores. An interaction between the permease domain of IrtB and Rv2895c is evident from GST pull-down assay. In vitro liposome reconstitution experiments further demonstrate that IrtA is indeed a siderophore exporter and the two-component IrtB-Rv2895c system is an importer of ferrated siderophores. Knockout of msmeg_6554, the irtA homologue in Mycobacterium smegmatis, resulted in an impaired M.tb siderophore export that is restored upon complementation with M.tb irtA.Our data suggest the interplay of three proteins, namely IrtA, IrtB and Rv2895c in synergizing the balance of siderophores and thus iron inside the mycobacterial cell

    A peptide derived from TIMP-3 inhibits multiple angiogenic growth factor receptors and tumour growth and inflammatory arthritis in mice

    Get PDF
    The binding of vascular endothelial growth factor (VEGF) to VEGF receptor-2 (VEGFR-2) on the surface of vascular endothelial cells stimulates many steps in the angiogenic pathway. Inhibition of this interaction is proving of value in moderating the neovascularization accompanying age-related macular degeneration and in the treatment of cancer. Tissue inhibitor of metalloproteinases-3 (TIMP-3) has been shown to be a natural VEGFR-2 specific antagonist—an activity that is independent of its ability to inhibit metalloproteinases. In this investigation we localize this activity to the C-terminal domain of the TIMP-3 molecule and characterize a short peptide, corresponding to part of this domain, that not only inhibits all three VEGF-family receptors, but also fibroblast growth factor and platelet-derived growth factor receptors. This multiple-receptor inhibition may explain why the peptide was also seen to be a powerful inhibitor of tumour growth and also a partial inhibitor of arthritic joint inflammation in vivo

    The Effect of Iron Limitation on the Transcriptome and Proteome of Pseudomonas fluorescens Pf-5

    Get PDF
    One of the most important micronutrients for bacterial growth is iron, whose bioavailability in soil is limited. Consequently, rhizospheric bacteria such as Pseudomonas fluorescens employ a range of mechanisms to acquire or compete for iron. We investigated the transcriptomic and proteomic effects of iron limitation on P. fluorescens Pf-5 by employing microarray and iTRAQ techniques, respectively. Analysis of this data revealed that genes encoding functions related to iron homeostasis, including pyoverdine and enantio-pyochelin biosynthesis, a number of TonB-dependent receptor systems, as well as some inner-membrane transporters, were significantly up-regulated in response to iron limitation. Transcription of a ribosomal protein L36-encoding gene was also highly up-regulated during iron limitation. Certain genes or proteins involved in biosynthesis of secondary metabolites such as 2,4-diacetylphloroglucinol (DAPG), orfamide A and pyrrolnitrin, as well as a chitinase, were over-expressed under iron-limited conditions. In contrast, we observed that expression of genes involved in hydrogen cyanide production and flagellar biosynthesis were down-regulated in an iron-depleted culture medium. Phenotypic tests revealed that Pf-5 had reduced swarming motility on semi-solid agar in response to iron limitation. Comparison of the transcriptomic data with the proteomic data suggested that iron acquisition is regulated at both the transcriptional and post-transcriptional levels

    The photoelectron energy distribution in the ionosphere ; Theoretical study of the moving Langmuir probe in the presence of a magnetic field ; Theoretical study of the response of a probe to plasma waves : annual report no. 1

    Full text link
    http://deepblue.lib.umich.edu/bitstream/2027.42/4933/5/bac3066.0001.001.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/4933/4/bac3066.0001.001.tx

    Binding properties of pyochelin and structurally related molecules to FptA of Pseudomonas aeruginosa

    No full text
    0022-2836 (Print) Journal ArticlePyochelin (Pch) is a siderophore that is produced in iron-limited conditions, by both Pseudomonas aeruginosa and Burkholderia cepacia. This iron uptake pathway could therefore be a target for the development of new antibiotics. Pch is (4'R,2''R/S,4''R)-2'-(2-hydroxyphenyl)-3''-methyl-4',5',2'',3'',4'',5''-he xahydro-[4',2'']bithiazolyl-4''-carboxylic acid, and has three chiral centres located at positions C4', C2'' and C4''. In P.aeruginosa, this siderophore chelates iron in the extracellular medium and transports it into the cells via a specific outer membrane transporter FptA. Docking experiments using the X-ray structure of FptA-Pch-Fe showed that iron-loaded or unloaded Pch diastereoisomers could bind to FptA. This was confirmed by in vivo binding assays. These binding properties and the iron uptake ability were not affected by removal of the C4' chiral centre. After removal of both the C4' and C2'' chiral centres, the molecule still bound to FptA but was unable to transport iron. The overall binding mode of this iron-complexed analogue was inverted. These findings describe the first antagonist of the Pch/FptA iron uptake pathway. Pch also complexes with iron in conjunction with other bidentate ligands such as cepabactin (Cep) or ethylene glycol. Docking experiments showed that such complexes bind to FptA via the Pch molecule. The mixed Pch-Fe-Cep complex was also recognized by FptA, having an affinity intermediate between that for Pch(2)-Fe and Cep(3)-Fe. Finally, the iron uptake properties of the different Pch-related molecules suggested a mechanism for FptA-Pch-Fe complex formation similar to that of the FpvA/Pvd uptake system. All these findings improve our understanding of specificity of the interaction between FptA and its siderophore

    Binding of iron-free siderophore, a common feature of siderophore outer membrane transporters of Escherichia coli and Pseudomonas aeruginosa

    No full text
    0021-9258 (Print) Journal ArticleTonB-dependent iron transporters present in the outer membranes of Gram-negative bacteria transport ferric-siderophore complexes into the periplasm. This requires proton motive force and an integral inner membrane complex, TonB-ExbB-ExbD. Recognition of iron-free siderophores by TonB-dependent outer membrane transporters (OMT) has only been described for a subfamily called OMT(N). These OMT(N)s have an additional domain at the N terminus, which interacts with an inner membrane regulatory protein to activate a cytoplasmic sigma factor. This induces transcription of iron transport genes. Here we showed that the ability to bind aposiderophores is not specific to the OMT(N) subfamily but may be a more general feature of OMTs. FhuA, the ferrichrome OMT in Escherichia coli, and FptA, the pyochelin (Pch) OMT in Pseudomonas aeruginosa, were both able to bind in vitro and in vivo the apo-forms and the ferric forms of their corresponding siderophore at a common binding site. FptA produced in P. aeruginosa cells grown in an iron-deficient medium copurifies with a ligand that, as characterized by fluorescence, is iron-free Pch. As described previously for the FpvA transporter (pyoverdine OMT in P. aeruginosa), it appears that in conditions of iron limitation all the FptA receptors at the cell surface are loaded with apoPch. This FptA-Pch complex is less stable in vitro than the previously described copurified FpvA-Pvd complex and can be loaded with iron in vitro in the presence of Pch-Fe, citrate-Fe, or ferrichrome-Fe. These findings improved our understanding of the iron uptake mechanism via siderophores in Gram-negative bacteria

    A key role for the periplasmic PfeE esterase in iron acquisition via the siderophore enterobactin in Pseudomonas aeruginosa

    No full text
    Enterobactin (ENT) is a siderophore (iron-chelating compound) produced by Escherichia coli to gain access to iron, an indispensable nutrient for bacterial growth. ENT is used as an exosiderophore by Pseudomonas aeruginosa with transport of ferri-ENT across the outer membrane by the PfeA transporter. Next to the pfeA gene on the chromosome is localized a gene encoding for an esterase, PfeE, whose transcription is regulated, as for pfeA, by the presence of ENT in bacterial environment. Purified PfeE hydrolyzed ferri-ENT into three molecules of 2,3-DHBS (2,3-dihydroxybenzoylserine) still complexed with ferric iron, and complete dissociation of iron from ENT chelating groups was only possible in the presence of both PfeE and an iron reducer, such as DTT. The crystal structure of PfeE and an inactive PfeE mutant complexed with ferri-ENT or a nonhydrolyzable ferri-catechol complex allowed identification of the enzyme binding site and the catalytic triad. Finally, cell fractionation and fluorescence microscopy showed periplasmic localization of PfeE in P. aeruginosa cells. Thus, the molecular mechanism of iron dissociation from ENT in P. aeruginosa differs from that previously described in E. coli. In P. aeruginosa, siderophore hydrolysis occurs in the periplasm, with ENT never reaching the bacterial cytoplasm. In E. coli, ferri-ENT crosses the inner membrane via the ABC transporter FepBCD and ferri-ENT is hydrolyzed by the esterase Fes only once it is in the cytoplasm
    corecore