4 research outputs found

    Cellular basis of ClC-2 Cl(-) channel-related brain and testis pathologies

    Get PDF
    The ClC-2 chloride channel is expressed in the plasma membrane of almost all mammalian cells. Mutations that cause the loss of ClC-2 function lead to retinal and testicular degeneration and leukodystrophy, whereas gain of function mutations cause hyper­aldosteronism. Leukodystrophy is also observed with a loss of GlialCAM, a cell adhesion molecule which binds to ClC-2 in glia. GlialCAM changes the localization of ClC-2 and opens the channel by altering its gating. We now used cell-type specific deletion of ClC-2 in mice to show that retinal and testicular degeneration depend on a loss of ClC-2 in retinal pigment epithelial cells and Sertoli cells, respectively, whereas leukodystrophy was fully developed only when ClC-2 was disrupted in both astrocytes and oligodendrocytes. The leukodystrophy of Glialcam(-/-) mice could not be rescued by crosses with Clcn2(op/op) mice in which a mutation mimics the ‘opening’ of ClC-2 by GlialCAM. These data indicate that GlialCAM-induced changes in biophysical properties of ClC-2 are irrelevant for GLIALCAM-related leukodystrophy. Taken together, our findings suggest that the pathology caused by Clcn2 disruption results from disturbed extracellular ion homeostasis and identifies the cells involved in this process

    Pathogenesis of hypertension in a mouse model for human CLCN2 related hyperaldosteronism

    Get PDF
    Human primary aldosteronism (PA) can be caused by mutations in several ion channel genes but mouse models replicating this condition are lacking. We now show that almost all known PA-associated CLCN2 mutations markedly increase ClC-2 chloride currents and generate knock-in mice expressing a constitutively open ClC-2 Cl(−) channel as mouse model for PA. The Clcn2(op) allele strongly increases the chloride conductance of zona glomerulosa cells, provoking a strong depolarization and increasing cytoplasmic Ca(2+) concentration. Clcn2(op) mice display typical features of human PA, including high serum aldosterone in the presence of low renin activity, marked hypertension and hypokalemia. These symptoms are more pronounced in homozygous Clcn2(op/op) than in heterozygous Clcn2+/op mice. This difference is attributed to the unexpected finding that only ~50 % of Clcn2(+/op) zona glomerulosa cells are depolarized. By reproducing essential features of human PA, Clcn2(op) mice are a valuable model to study the pathological mechanisms underlying this disease

    Disrupting MLC1 and GlialCAM and ClC-2 interactions in leukodystrophy entails glial chloride channel dysfunction

    Get PDF
    Defects in the astrocytic membrane protein MLC1, the adhesion molecule GlialCAM or the chloride channel ClC-2 underlie human leukoencephalopathies. Whereas GlialCAM binds ClC-2 and MLC1, and modifies ClC-2 currents in vitro, no functional connections between MLC1 and ClC-2 are known. Here we investigate this by generating loss-of-function Glialcam and Mlc1 mouse models manifesting myelin vacuolization. We find that ClC-2 is unnecessary for MLC1 and GlialCAM localization in brain, whereas GlialCAM is important for targeting MLC1 and ClC-2 to specialized glial domains in vivo and for modifying ClC-2's biophysical properties specifically in oligodendrocytes (OLs), the cells chiefly affected by vacuolization. Unexpectedly, MLC1 is crucial for proper localization of GlialCAM and ClC-2, and for changing ClC-2 currents. Our data unmask an unforeseen functional relationship between MLC1 and ClC-2 in vivo, which is probably mediated by GlialCAM, and suggest that ClC-2 participates in the pathogenesis of megalencephalic leukoencephalopathy with subcortical cysts

    Departure gate of acidic Ca(2+) confirmed

    No full text
    More potent, but less known than IP3 that liberates Ca2+ from the ER, NAADP releases Ca2+ from acidic stores. The notion that TPC channels mediate this Ca2+ release was questioned recently by studies suggesting that TPCs are rather PI(3,5)P2‐activated Na+ channels. Ruas et al (2015) now partially reconcile these views by showing that TPCs significantly conduct both cations and confirm their activation by both NAADP and PI(3,5)P2. They attribute the failure of others to observe TPC‐dependent NAADP‐induced Ca2+ release in vivo to inadequate mouse models that retain partial TPC function
    corecore