3 research outputs found

    Thresholds for the Dust Driven Mass Loss from C-rich AGB Stars

    Full text link
    It is well established that mass loss from AGB stars due to dust driven winds cannot be arbitrarily low. We model the mass loss from carbon rich AGB stars using detailed frequency-dependent radiation hydrodynamics including dust formation. We present a study of the thresholds for the mass loss rate as a function of stellar parameters based on a subset of a larger grid of such models and compare these results to previous observational and theoretical work. Furthermore, we demonstrate the impact of the pulsation mechanism and dust formation for the creation of a stellar wind and how it affects these thresholds and briefly discuss the consequences for stellar evolution.Comment: 2 pages, 1 figure. To be published in the proceedings of IAU Symp. 241 on Stellar Populations as Building Blocks of Galaxies, ed. A. Vazdekis et al. (2007). Replaced to match edited versio

    Dust driven mass loss from carbon stars as a function of stellar parameters - I. A grid of Solar-metallicity wind models

    Full text link
    [Abridged] We have computed a grid of 900 numeric dynamic model atmospheres (DMAs) using a well-tested computer code. This grid of models covers most of the expected combinations of stellar parameters, which are made up of the stellar temperature, the stellar luminosity, the stellar mass, the abundance of condensible carbon, and the velocity amplitude of the pulsation. The resultant mass-loss rates and wind speeds are clearly affected by the choice of stellar temperature, mass, luminosity and the abundance of available carbon. In certain parts of the parameter space there is also an inevitable mass-loss threshold, below which a dust-driven wind is not possible. Contrary to some previous studies, we find a strong dependence on the abundance of free carbon, which turns out to be a critical parameter. Furthermore, we have found that the dust grains that form in the atmosphere may grow too large for the commonly used small particle approximation of the dust opacity to be strictly valid. This may have some bearing on the wind properties, although further study of this problem is needed before quantitative conclusions can be drawn. The wind properties show relatively simple dependences on stellar parameters above the mass-loss threshold, while the threshold itself is of a more complicated nature. Hence, we chose not to derive any simplistic mass-loss formula, but rather provide a mass-loss prescription in the form of an easy-to-use FORTRAN routine. Since this mass-loss routine is based on data coming from an essentially self-consistent model of mass loss, it may therefore serve as a better mass-loss prescription for stellar evolution calculations than empirical formulae. Furthermore, we conclude that there are still some issues that need to be investigated, such as the role of grain-sizes.Comment: 27 pages, 11 figures, to appear in Astronomy & Astrophysics. Corrections by language editor included in this new versio
    corecore