3,607 research outputs found
Weak Phase gamma Using Isospin Analysis and Time Dependent Asymmetry in B_d -> K_s pi^+ pi^-
We present a method for measuring the weak phase gamma using isospin analysis
of three body B decays into K pi pi channels. Differential decay widths and
time dependent asymmetry in B_d -> K_s pi^+pi^- mode needs to be measured into
even isospin pi pi states. The method can be used to extract gamma, as well as,
the size of the electroweak penguin contributions. The technique is free from
assumptions like SU(3) or neglect of any contributions to the decay amplitudes.
By studying different regions of the Dalitz plot, it is possible to reduce the
ambiguity in the value of gamma.Comment: 11 pages, 1 figur
Can the Renormalization Group Improved Effective Potential be used to estimate the Higgs Mass in the Conformal Limit of the Standard Model?
We consider the effective potential in the standard model with a single
Higgs doublet in the limit that the only mass scale present is
radiatively generated. Using a technique that has been shown to determine
completely in terms of the renormalization group (RG) functions when using the
Coleman-Weinberg (CW) renormalization scheme, we first sum leading-log (LL)
contributions to using the one loop RG functions, associated with five
couplings (the top quark Yukawa coupling , the quartic coupling of the Higgs
field , the SU(3) gauge coupling , and the couplings
and ). We then employ the two loop RG functions with the three couplings
, , to sum the next-to-leading-log (NLL) contributions to and
then the three to five loop RG functions with one coupling to sum all the
contributions to . In order to compute these sums, it is
necessary to convert those RG functions that have been originally computed
explicitly in the minimal subtraction (MS) scheme to their form in the CW
scheme. The Higgs mass can then be determined from the effective potential: the
result is decreases to at
order and at order. No reasonable
estimate of can be made at orders or . This is taken
to be an indication that this mechanism for spontaneous symmetry breaking is in
fact viable, though one in which there is slow convergence towards the actual
value of . The mass is argued to be an upper bound on
.Comment: 24 pages, 5 figures. Updated version contains new discussion,
references, figures, and corrects errors in reference
A population-based approach to background discrimination in particle physics
Background properties in experimental particle physics are typically
estimated using control samples corresponding to large numbers of events. This
can provide precise knowledge of average background distributions, but
typically does not consider the effect of fluctuations in a data set of
interest. A novel approach based on mixture model decomposition is presented as
a way to estimate the effect of fluctuations on the shapes of probability
distributions in a given data set, with a view to improving on the knowledge of
background distributions obtained from control samples. Events are treated as
heterogeneous populations comprising particles originating from different
processes, and individual particles are mapped to a process of interest on a
probabilistic basis. The proposed approach makes it possible to extract from
the data information about the effect of fluctuations that would otherwise be
lost using traditional methods based on high-statistics control samples. A
feasibility study on Monte Carlo is presented, together with a comparison with
existing techniques. Finally, the prospects for the development of tools for
intensive offline analysis of individual events at the Large Hadron Collider
are discussed.Comment: Updated according to the version published in J. Phys.: Conf. Ser.
Minor changes have been made to the text with respect to the published
article with a view to improving readabilit
Searching for physics beyond the Standard Model through the dipole interaction
The magnetic dipole interaction played a central role in the development of
QED, and continued in that role for the Standard Model. The muon anomalous
magnetic moment has served as a benchmark for models of new physics, and the
present experimental value is larger than the standard-model value by more than
three standard deviations. The electric dipole moment (EDM) violates parity
({}) and time-reversal ({}) symmetries, and in the context of the
theorem, the combination of charge conjugation and parity (). Since a new
source of {} violation outside of that observed in the and meson
systems is needed to help explain the baryon asymmetry of the universe,
searches for EDMs are being carried out worldwide on a number of systems. The
standard-model value of the EDM is immeasurably small, so any evidence for an
EDM would signify the observation of new physics. Unique opportunities exist
for EDM searches using polarized proton, deuteron or muon beams in storage
rings. This talk will provide an overview of the theory of dipole moments, and
the relevant experiments. The connection to the transition dipole moment that
could produce lepton flavor violating interactions such as is also mentioned.Comment: Invited Plenary talk at the 19th International Spin Physics
Symposium, Juelic
A well-separated pairs decomposition algorithm for k-d trees implemented on multi-core architectures
Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.Variations of k-d trees represent a fundamental data structure used in Computational Geometry with numerous applications in science. For example particle track tting in the software of the LHC experiments, and in simulations of N-body systems in the study of dynamics of interacting galaxies, particle beam physics, and molecular dynamics in biochemistry. The many-body tree methods devised by Barnes and Hutt in the 1980s and the Fast Multipole Method introduced in 1987 by Greengard and Rokhlin use variants of k-d trees to reduce the computation time upper bounds to O(n log n) and even O(n) from O(n2). We present an algorithm that uses the principle of well-separated pairs decomposition to always produce compressed trees in O(n log n) work. We present and evaluate parallel implementations for the algorithm that can take advantage of multi-core architectures.The Science and Technology Facilities Council, UK
Averages of b-hadron Properties at the End of 2005
This article reports world averages for measurements on b-hadron properties
obtained by the Heavy Flavor Averaging Group (HFAG) using the available results
as of at the end of 2005. In the averaging, the input parameters used in the
various analyses are adjusted (rescaled) to common values, and all known
correlations are taken into account. The averages include lifetimes, neutral
meson mixing parameters, parameters of semileptonic decays, branching fractions
of B meson decays to final states with open charm, charmonium and no charm, and
measurements related to CP asymmetries
ZnMoO4: a promising bolometer for neutrinoless double beta decay searches
We investigate the performances of two ZnMoO4 scintillating crystals operated
as bolometers, in view of a next generation experiment to search the
neutrinoless double beta decay of Mo-100. We present the results of the alpha
vs beta/gamma discrimination, obtained through the scintillation light as well
as through the study of the shape of the thermal signal alone. The
discrimination capability obtained at the 2615 keV line of Tl-208 is 8 sigma,
using the heat-light scatter plot, while it exceeds 20 sigma using the shape of
the thermal pulse alone. The achieved FWHM energy resolution ranges from 2.4
keV (at 238 keV) to 5.7 keV (at 2615 keV). The internal radioactive
contaminations of the ZnMoO4 crystals were evaluated through a 407 hours
background measurement. The obtained limit is < 32 microBq/kg for Th-228 and
Ra-226. These values were used for a Monte Carlo simulation aimed at evaluating
the achievable background level of a possible, future array of enriched ZnMoO4
crystals.Comment: 9 pages, 8 figure
The Discrepancy Between tau and e+e- Spectral Functions Revisited and the Consequences for the Muon Magnetic Anomaly
We revisit the procedure for comparing the pi pi spectral function measured
in tau decays to that obtained in e+e- annihilation. We re-examine the
isospin-breaking corrections using new experimental and theoretical input, and
find improved agreement between the tau- --> pi- pi0 nu_tau branching fraction
measurement and its prediction using the isospin-breaking-corrected e+e- -->
pi+pi- spectral function, though not resolving all discrepancies. We recompute
the lowest order hadronic contributions to the muon g-2 using e+e- and tau data
with the new corrections, and find a reduced difference between the two
evaluations. The new tau-based estimate of the muon magnetic anomaly is found
to be 1.9 standard deviations lower than the direct measurement.Comment: 10 pages, 6 figures, submitted to Eur. Phys. J. C; (v2): Revised
version with improved and uniform treatment of tau and e+e- data with
HVPTools and a few minor bug fixes; (v3): Final version accepted for
publicatio
A continuous integration and web framework in support of the ATLAS publication process
The ATLAS collaboration defines methods, establishes procedures, and organises advisory groups to manage the publication processes of scientific papers, conference papers, and public notes. All stages are managed through web systems, computing programs, and tools that are designed and developed by the collaboration. A framework called FENCE is integrated into the CERN GitLab software repository, to automatically configure workspaces where each analysis can be documented by the analysis team and managed by the relevant coordinators. Continuous integration is used to guide the writers in applying consistent and correct formatting when preparing papers to be submitted to scientific journals. Additional software assures the correctness of other aspects of each paper, such as the lists of collaboration authors, funding agencies, and foundations. The framework and the workflow therein provide automatic and easy support to the researchers and facilitates each phase of the publication process, allowing authors to focus on the article contents. The framework and its integration with the most up to date and efficient tools has consequently provided a more professional and efficient automatized work environment to the whole collaboration.ATLAS Collaboration for the support provided to achieve the results
described in this paper. We are grateful to ATLAS collaborators who provided invaluable comments
and input to the paper and the framework it presents. Special acknowledgements go to Marzio Nessi
for helping initiate the Glance project in ATLAS and for supporting its development, and to Kathy– 20 –Pommes for supervising the Glance team at CERNinfo:eu-repo/semantics/publishedVersio
- …