3,607 research outputs found

    Weak Phase gamma Using Isospin Analysis and Time Dependent Asymmetry in B_d -> K_s pi^+ pi^-

    Full text link
    We present a method for measuring the weak phase gamma using isospin analysis of three body B decays into K pi pi channels. Differential decay widths and time dependent asymmetry in B_d -> K_s pi^+pi^- mode needs to be measured into even isospin pi pi states. The method can be used to extract gamma, as well as, the size of the electroweak penguin contributions. The technique is free from assumptions like SU(3) or neglect of any contributions to the decay amplitudes. By studying different regions of the Dalitz plot, it is possible to reduce the ambiguity in the value of gamma.Comment: 11 pages, 1 figur

    Can the Renormalization Group Improved Effective Potential be used to estimate the Higgs Mass in the Conformal Limit of the Standard Model?

    Full text link
    We consider the effective potential VV in the standard model with a single Higgs doublet in the limit that the only mass scale μ\mu present is radiatively generated. Using a technique that has been shown to determine VV completely in terms of the renormalization group (RG) functions when using the Coleman-Weinberg (CW) renormalization scheme, we first sum leading-log (LL) contributions to VV using the one loop RG functions, associated with five couplings (the top quark Yukawa coupling xx, the quartic coupling of the Higgs field yy, the SU(3) gauge coupling zz, and the SU(2)×U(1)SU(2) \times U(1) couplings rr and ss). We then employ the two loop RG functions with the three couplings xx, yy, zz to sum the next-to-leading-log (NLL) contributions to VV and then the three to five loop RG functions with one coupling yy to sum all the N2LL...N4LLN^2LL...N^4LL contributions to VV. In order to compute these sums, it is necessary to convert those RG functions that have been originally computed explicitly in the minimal subtraction (MS) scheme to their form in the CW scheme. The Higgs mass can then be determined from the effective potential: the LLLL result is mH=219  GeV/c2m_{H}=219\;GeV/c^2 decreases to mH=188  GeV/c2m_{H}=188\;GeV/c^2 at N2LLN^{2}LL order and mH=163  GeV/c2m_{H}=163\;GeV/c^2 at N4LLN^{4}LL order. No reasonable estimate of mHm_H can be made at orders VNLLV_{NLL} or VN3LLV_{N^3LL}. This is taken to be an indication that this mechanism for spontaneous symmetry breaking is in fact viable, though one in which there is slow convergence towards the actual value of mHm_H. The mass 163  GeV/c2163\;GeV/c^2 is argued to be an upper bound on mHm_H.Comment: 24 pages, 5 figures. Updated version contains new discussion, references, figures, and corrects errors in reference

    A population-based approach to background discrimination in particle physics

    Full text link
    Background properties in experimental particle physics are typically estimated using control samples corresponding to large numbers of events. This can provide precise knowledge of average background distributions, but typically does not consider the effect of fluctuations in a data set of interest. A novel approach based on mixture model decomposition is presented as a way to estimate the effect of fluctuations on the shapes of probability distributions in a given data set, with a view to improving on the knowledge of background distributions obtained from control samples. Events are treated as heterogeneous populations comprising particles originating from different processes, and individual particles are mapped to a process of interest on a probabilistic basis. The proposed approach makes it possible to extract from the data information about the effect of fluctuations that would otherwise be lost using traditional methods based on high-statistics control samples. A feasibility study on Monte Carlo is presented, together with a comparison with existing techniques. Finally, the prospects for the development of tools for intensive offline analysis of individual events at the Large Hadron Collider are discussed.Comment: Updated according to the version published in J. Phys.: Conf. Ser. Minor changes have been made to the text with respect to the published article with a view to improving readabilit

    Searching for physics beyond the Standard Model through the dipole interaction

    Full text link
    The magnetic dipole interaction played a central role in the development of QED, and continued in that role for the Standard Model. The muon anomalous magnetic moment has served as a benchmark for models of new physics, and the present experimental value is larger than the standard-model value by more than three standard deviations. The electric dipole moment (EDM) violates parity ({PP}) and time-reversal ({TT}) symmetries, and in the context of the CPTCPT theorem, the combination of charge conjugation and parity (CPCP). Since a new source of {CP CP} violation outside of that observed in the KK and BB meson systems is needed to help explain the baryon asymmetry of the universe, searches for EDMs are being carried out worldwide on a number of systems. The standard-model value of the EDM is immeasurably small, so any evidence for an EDM would signify the observation of new physics. Unique opportunities exist for EDM searches using polarized proton, deuteron or muon beams in storage rings. This talk will provide an overview of the theory of dipole moments, and the relevant experiments. The connection to the transition dipole moment that could produce lepton flavor violating interactions such as μ+→e+γ\mu^+ \rightarrow e^+ \gamma is also mentioned.Comment: Invited Plenary talk at the 19th International Spin Physics Symposium, Juelic

    A well-separated pairs decomposition algorithm for k-d trees implemented on multi-core architectures

    Get PDF
    Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.Variations of k-d trees represent a fundamental data structure used in Computational Geometry with numerous applications in science. For example particle track tting in the software of the LHC experiments, and in simulations of N-body systems in the study of dynamics of interacting galaxies, particle beam physics, and molecular dynamics in biochemistry. The many-body tree methods devised by Barnes and Hutt in the 1980s and the Fast Multipole Method introduced in 1987 by Greengard and Rokhlin use variants of k-d trees to reduce the computation time upper bounds to O(n log n) and even O(n) from O(n2). We present an algorithm that uses the principle of well-separated pairs decomposition to always produce compressed trees in O(n log n) work. We present and evaluate parallel implementations for the algorithm that can take advantage of multi-core architectures.The Science and Technology Facilities Council, UK

    Averages of b-hadron Properties at the End of 2005

    Get PDF
    This article reports world averages for measurements on b-hadron properties obtained by the Heavy Flavor Averaging Group (HFAG) using the available results as of at the end of 2005. In the averaging, the input parameters used in the various analyses are adjusted (rescaled) to common values, and all known correlations are taken into account. The averages include lifetimes, neutral meson mixing parameters, parameters of semileptonic decays, branching fractions of B meson decays to final states with open charm, charmonium and no charm, and measurements related to CP asymmetries

    ZnMoO4: a promising bolometer for neutrinoless double beta decay searches

    Full text link
    We investigate the performances of two ZnMoO4 scintillating crystals operated as bolometers, in view of a next generation experiment to search the neutrinoless double beta decay of Mo-100. We present the results of the alpha vs beta/gamma discrimination, obtained through the scintillation light as well as through the study of the shape of the thermal signal alone. The discrimination capability obtained at the 2615 keV line of Tl-208 is 8 sigma, using the heat-light scatter plot, while it exceeds 20 sigma using the shape of the thermal pulse alone. The achieved FWHM energy resolution ranges from 2.4 keV (at 238 keV) to 5.7 keV (at 2615 keV). The internal radioactive contaminations of the ZnMoO4 crystals were evaluated through a 407 hours background measurement. The obtained limit is < 32 microBq/kg for Th-228 and Ra-226. These values were used for a Monte Carlo simulation aimed at evaluating the achievable background level of a possible, future array of enriched ZnMoO4 crystals.Comment: 9 pages, 8 figure

    The Discrepancy Between tau and e+e- Spectral Functions Revisited and the Consequences for the Muon Magnetic Anomaly

    Full text link
    We revisit the procedure for comparing the pi pi spectral function measured in tau decays to that obtained in e+e- annihilation. We re-examine the isospin-breaking corrections using new experimental and theoretical input, and find improved agreement between the tau- --> pi- pi0 nu_tau branching fraction measurement and its prediction using the isospin-breaking-corrected e+e- --> pi+pi- spectral function, though not resolving all discrepancies. We recompute the lowest order hadronic contributions to the muon g-2 using e+e- and tau data with the new corrections, and find a reduced difference between the two evaluations. The new tau-based estimate of the muon magnetic anomaly is found to be 1.9 standard deviations lower than the direct measurement.Comment: 10 pages, 6 figures, submitted to Eur. Phys. J. C; (v2): Revised version with improved and uniform treatment of tau and e+e- data with HVPTools and a few minor bug fixes; (v3): Final version accepted for publicatio

    A continuous integration and web framework in support of the ATLAS publication process

    Get PDF
    The ATLAS collaboration defines methods, establishes procedures, and organises advisory groups to manage the publication processes of scientific papers, conference papers, and public notes. All stages are managed through web systems, computing programs, and tools that are designed and developed by the collaboration. A framework called FENCE is integrated into the CERN GitLab software repository, to automatically configure workspaces where each analysis can be documented by the analysis team and managed by the relevant coordinators. Continuous integration is used to guide the writers in applying consistent and correct formatting when preparing papers to be submitted to scientific journals. Additional software assures the correctness of other aspects of each paper, such as the lists of collaboration authors, funding agencies, and foundations. The framework and the workflow therein provide automatic and easy support to the researchers and facilitates each phase of the publication process, allowing authors to focus on the article contents. The framework and its integration with the most up to date and efficient tools has consequently provided a more professional and efficient automatized work environment to the whole collaboration.ATLAS Collaboration for the support provided to achieve the results described in this paper. We are grateful to ATLAS collaborators who provided invaluable comments and input to the paper and the framework it presents. Special acknowledgements go to Marzio Nessi for helping initiate the Glance project in ATLAS and for supporting its development, and to Kathy– 20 –Pommes for supervising the Glance team at CERNinfo:eu-repo/semantics/publishedVersio
    • …
    corecore