799 research outputs found
Mesoscopic order and the dimentionality of long-range resonance energy transfer in supramolecular semiconductors
We present time-resolved photoluminescence measurements on two series of
oligo-p-phenylenevinylene materials that self-assemble into supramolecular
nanostructures with thermotropic reversibility in dodecane. One set of
derivatives form chiral, helical stacks while the second set form less
organised, frustrated stacks. Here we study the effects of supramolecular
organisation on the resonance energy transfer rates. We measure these rates in
nanoassemblies formed with mixed blends of oligomers and compare them with the
rates predicted by Foerster theory. Our results and analysis show that control
of supramolecular order in the nanometre lengthscale has a dominant effect on
the efficiency and dimentionality of resonance energy transfer.Comment: 17 Pages, 5 Figures, Submitted to J. Chem. Phy
β-Cell Generation: Can Rodent Studies Be Translated to Humans?
β-cell replacement by allogeneic islet transplantation is a promising approach for patients with type 1 diabetes, but the shortage of organ donors requires new sources of β cells. Islet regeneration in vivo and generation of β-cells ex vivo followed by transplantation represent attractive therapeutic alternatives to restore the β-cell mass. In this paper, we discuss different postnatal cell types that have been envisaged as potential sources for future β-cell replacement therapy. The ultimate goal being translation to the clinic, a particular attention is given to the discrepancies between findings from studies performed in rodents (both ex vivo on primary cells and in vivo on animal models), when compared with clinical data and studies performed on human cells
Ube2j2 ubiquitinates hydroxylated amino acids on ER-associated degradation substrates
An E2–E3 complex can ubiquitinate substrates via either an isopeptide bond (to a lysine) or an ester bond (to a serine or threonine) and preferentially uses the latter to induce ERAD
Whose national emergency? Caboolture and Kirribili? or Milikapiti and Mutitjulu?
Keynote Address - Ms Marion Scrymgour MLA Member for Arafura, Northern Territory Government. Other Speakers - Professor Gavin Brown AO FAA, Vice-Chancellor and Principal, University of Sydney; Mr Neville Perkins OAM, Master of Ceremonies; Mr Charles Madden, Welcome to country; Ms Michelle Blanchard, Acting Director, Koori Centre; Mr Nicholas Beeton, Ms Kerry Wallace-Massone, Ms Jade Swan Prize winners, Dr Charles Perkins AO Annual Memorial Prize
Off-Label Prescription of Genetically Modified Organism Medicines in Europe:Emerging Conflicts of Interest?
Recently, the first human medicine containing a genetically modified organism (GMO medicine) was authorized for use in the European market. Just as any medicinal product, the market authorization for a GMO medicine contains a precise description of the therapeutic use for which the medicinal product is intended. Within this use, the application of the GMO medicine is permitted, without the need for the institution to obtain a specific permit. In practice, however, medicinal products are also frequently prescribed for treatment outside the registered therapeutic use, a practice that is referred to as "off-label use." While off-label use of conventional medicines is permitted and has been very useful, the off-label use of GMO medicines is not covered in the European Union (EU) legislation or guidelines and falls under each member state's national environmental legislation. This implies that in the Netherlands and most other EU member states, an environmental permit will be required for any institution that uses the GMO medicine outside the registered application(s). In the Netherlands, this permit is identical to the permits required for the execution of clinical trials involving nonregistered GMOs. The application procedure for such permit is time-consuming. This process can therefore limit the therapeutic options for medical professionals. As a consequence, desired treatment regimens could be withheld for certain patient (groups). To make future off-label use of GMO medicines permissible in a way that is acceptable for all stakeholders, regulators should adopt a proactive attitude and formulate transparent legislative procedures for this. Only then the field can maintain the public acceptance of GMO medicines, while maintaining the freedom to operate of medical professionals
Influence of eye movement on lens dose and optic nerve target coverage during craniospinal irradiation
PURPOSE: Optic nerves are part of the craniospinal irradiation (CSI) target volume. Modern radiotherapy techniques achieve highly conformal target doses while avoiding organs-at-risk such as the lens. The magnitude of eye movement and its influence on CSI target- and avoidance volumes are unclear. We aimed to evaluate the movement-range of lenses and optic nerves and its influence on dose distribution of several planning techniques. METHODS: Ten volunteers underwent MRI scans in various gaze directions (neutral, left, right, cranial, caudal). Lenses, orbital optic nerves, optic discs and CSI target volumes were delineated. 36-Gy cranial irradiation plans were constructed on synthetic CT images in neutral gaze, with Volumetric Modulated Arc Therapy, pencil-beam scanning proton therapy, and 3D-conventional photons. Movement-amplitudes of lenses and optic discs were analyzed, and influence of gaze direction on lens and orbital optic nerve dose distribution. RESULTS: Mean eye structures’ shift from neutral position was greatest in caudal gaze; −5.8±1.2 mm (±SD) for lenses and 7.0±2.0 mm for optic discs. In 3D-conventional plans, caudal gaze decreased Mean Lens Dose (MLD). In VMAT and proton plans, eye movements mainly increased MLD and diminished D98 orbital optic nerve (D98(OON)) coverage; mean MLD increased up to 5.5 Gy [total ΔMLD range −8.1 to 10.0 Gy], and mean D98(OON) decreased up to 3.3 Gy [total ΔD98(OON) range −13.6 to 1.2 Gy]. VMAT plans optimized for optic disc Internal Target Volume and lens Planning organ-at-Risk Volume resulted in higher MLD over gaze directions. D98(OON) became ≥95% of prescribed dose over 95/100 evaluated gaze directions, while all-gaze bilateral D98(OON) significantly changed in 1 of 10 volunteers. CONCLUSION: With modern CSI techniques, eye movements result in higher lens doses and a mean detriment for orbital optic nerve dose coverage of <10% of prescribed dose
iPSC-Based Modeling of RAG2 Severe Combined Immunodeficiency Reveals Multiple T Cell Developmental Arrests
RAG2 severe combined immune deficiency (RAG2-SCID) is a lethal disorder caused by the absence of functional T and B cells due to a differentiation block. Here, we generated induced pluripotent stem cells (iPSCs) from a RAG2-SCID patient to study the nature of the T cell developmental blockade. We observed a strongly reduced capacity to differentiate at every investigated stage of T cell development, from early CD7−CD5− to CD4+CD8+. The impaired differentiation was accompanied by an increase in CD7−CD56+CD33+ natural killer (NK) cell-like cells. T cell receptor D rearrangements were completely absent in RAG2SCID cells, whereas the rare T cell receptor B rearrangements were likely the result of illegitimate rearrangements. Repair of RAG2 restored the capacity to induce T cell receptor rearrangements, normalized T cell development, and corrected the NK cell-like phenotype. In conclusion, we succeeded in generating an iPSC-based RAG2-SCID model, which enabled the identification of previously unrecognized disorder-related T cell developmental roadblocks.In this article, Mikkers
Gammaretrovirus-mediated correction of SCID-X1 is associated with skewed vector integration site distribution in vivo
We treated 10 children with X-linked SCID (SCID-X1) using gammaretrovirus-mediated gene transfer. Those with sufficient follow-up were found to have recovered substantial immunity in the absence of any serious adverse events up to 5 years after treatment. To determine the influence of vector integration on lymphoid reconstitution, we compared retroviral integration sites (RISs) from peripheral blood CD3(+) T lymphocytes of 5 patients taken between 9 and 30 months after transplantation with transduced CD34(+) progenitor cells derived from 1 further patient and I healthy donor. Integration occurred preferentially in gene regions on either side of transcription start sites, was clustered, and correlated with the expression level in CD34(+) progenitors during transduction. In contrast to those in CD34(+) cells, RISs recovered from engrafted CD3(+)T cells were significantly overrepresented within or near genes encoding proteins with kinase or transferase activity or involved in phosphorus metabolism. Although gross patterns of gene expression were unchanged in transduced cells, the divergence of RIS target frequency between transduced progenitor cells and post-thymic T lymphocytes indicates that vector integration influences cell survival, engraftment, or proliferation
Exciton bimolecular annihilation dynamics in supramolecular nanostructures of conjugated oligomers
We present femtosecond transient absorption measurements on -conjugated
supramolecular assemblies in a high pump fluence regime.
Oligo(\emph{p}-phenylenevinylene) monofunctionalized with
ureido-\emph{s}-triazine (MOPV) self-assembles into chiral stacks in dodecane
solution below 75C at a concentration of M. We
observe exciton bimolecular annihilation in MOPV stacks at high excitation
fluence, indicated by the fluence-dependent decay of B-exciton
spectral signatures, and by the sub-linear fluence dependence of time- and
wavelength-integrated photoluminescence (PL) intensity. These two
characteristics are much less pronounced in MOPV solution where the phase
equilibrium is shifted significantly away from supramolecular assembly,
slightly below the transition temperature. A mesoscopic rate-equation model is
applied to extract the bimolecular annihilation rate constant from the
excitation fluence dependence of transient absorption and PL signals. The
results demonstrate that the bimolecular annihilation rate is very high with a
square-root dependence in time. The exciton annihilation results from a
combination of fast exciton diffusion and resonance energy transfer. The
supramolecular nanostructures studied here have electronic properties that are
intermediate between molecular aggregates and polymeric semiconductors
Recommended from our members
Conversion of Mature Human β-Cells Into Glucagon-Producing α-Cells
Conversion of one terminally differentiated cell type into another (or transdifferentiation) usually requires the forced expression of key transcription factors. We examined the plasticity of human insulin-producing β-cells in a model of islet cell aggregate formation. Here, we show that primary human β-cells can undergo a conversion into glucagon-producing α-cells without introduction of any genetic modification. The process occurs within days as revealed by lentivirus-mediated β-cell lineage tracing. Converted cells are indistinguishable from native α-cells based on ultrastructural morphology and maintain their α-cell phenotype after transplantation in vivo. Transition of β-cells into α-cells occurs after β-cell degranulation and is characterized by the presence of β-cell–specific transcription factors Pdx1 and Nkx6.1 in glucagon+ cells. Finally, we show that lentivirus-mediated knockdown of Arx, a determinant of the α-cell lineage, inhibits the conversion. Our findings reveal an unknown plasticity of human adult endocrine cells that can be modulated. This endocrine cell plasticity could have implications for islet development, (patho)physiology, and regeneration
- …