26 research outputs found
Late Effects After Haematopoietic Stem Cell Transplantation in ALL, Long-Term Follow-Up and Transition: A Step Into Adult Life
Haematopoietic stem cell transplant (HSCT) can be a curative treatment for children and adolescents with very-high-risk acute lymphoblastic leukaemia (ALL). Improvements in supportive care and transplant techniques have led to increasing numbers of long-term survivors worldwide. However, conditioning regimens as well as transplant-related complications are associated with severe sequelae, impacting patients' quality of life. It is widely recognised that paediatric HSCT survivors must have timely access to life-long care and surveillance in order to prevent, ameliorate and manage all possible adverse late effects of HSCT. This is fundamentally important because it can both prevent ill health and optimise the quality and experience of survival following HSCT. Furthermore, it reduces the impact of preventable chronic illness on already under-resourced health services. In addition to late effects, survivors of paediatric ALL also have to deal with unique challenges associated with transition to adult services. In this review, we: (1) provide an overview of the potential late effects following HSCT for ALL in childhood and adolescence; (2) focus on the unique challenges of transition from paediatric care to adult services; and (3) provide a framework for long-term surveillance and medical care for survivors of paediatric ALL who have undergone HSCT
A Review of Acute and Long-Term Neurological Complications Following Haematopoietic Stem Cell Transplant for Paediatric Acute Lymphoblastic Leukaemia
Despite advances in haematopoietic stem cell transplant (HSCT) techniques, the risk of serious side effects and complications still exists. Neurological complications, both acute and long term, are common following HSCT and contribute to significant morbidity and mortality. The aetiology of neurotoxicity includes infections and a wide variety of non-infectious causes such as drug toxicities, metabolic abnormalities, irradiation, vascular and immunologic events and the leukaemia itself. The majority of the literature on this subject is focussed on adults. The impact of the combination of neurotoxic drugs given before and during HSCT, radiotherapy and neurological complications on the developing and vulnerable paediatric and adolescent brain remains unclear. Moreover, the age-related sensitivity of the nervous system to toxic insults is still being investigated. In this article, we review current evidence regarding neurotoxicity following HSCT for acute lymphoblastic leukaemia in childhood. We focus on acute and long-term impacts. Understanding the aetiology and long-term sequelae of neurological complications in children is particularly important in the current era of immunotherapy for acute lymphoblastic leukaemia (such as chimeric antigen receptor T cells and bi-specific T-cell engager antibodies), which have well-known and common neurological side effects and may represent a future treatment modality for at least a fraction of HSCT-recipients
Dosimetric feasibility of hypofractionation for metastatic bone/bone marrow lesions from paediatric solid tumours
Background and purpose: The aim of this study was to determine the feasibility of hypofractionated schedules for metastatic bone/bone marrow lesions in children and to investigate dosimetric differences to the healthy surrounding tissues compared to conventional schedules. Methods: 27 paediatric patients (mean age, 7 years) with 50 metastatic bone/bone marrow lesions (n = 26 cranial, n = 24 extra-cranial) from solid primary tumours (neuroblastoma and sarcoma) were included. The PTV was a 2 mm expansion of the GTV. A prescription dose of 36 and 54 Gy EQD2 α / β =10 was used for neuroblastoma and sarcoma lesions, respectively. VMAT plans were optimized for each single lesion using different fractionation schedules: conventional (30/20 fractions, V 95% ≥ 99%, D 0.1cm 3 ≤ 107%) and hypofractionated (15/10/5/3 fractions, V 100% ≥ 95%, D 0.1cm 3 ≤ 120%) . Relative EQD2 differences in OARs D mean between the different schedules were compared. Results: PTV coverage was met for all plans independently of the fractionation schedule and for all lesions (V 95% range 95.5–100%, V 100% range 95.1–100%), with exception of the vertebrae (V 100% range 63.5–91.0%). For most OARs, relative mean reduction in the D mean was seen for the hypofractionated plans compared to the conventional plans, with largest sparing in the 5 fractions (< 43%) followed by the 3 fractions schedule (< 40%). In case of PTV overlap with an OAR, a significant increase in dose for the OAR was observed with hypofractionation. Conclusions: For the majority of the cases, iso-effective plans with hypofractionation were feasible with similar or less dose in the OARs. The most suitable fractionation schedule should be personalised depending on the spatial relationship between the PTV and OARs and the prescription dose
Influence of eye movement on lens dose and optic nerve target coverage during craniospinal irradiation
PURPOSE: Optic nerves are part of the craniospinal irradiation (CSI) target volume. Modern radiotherapy techniques achieve highly conformal target doses while avoiding organs-at-risk such as the lens. The magnitude of eye movement and its influence on CSI target- and avoidance volumes are unclear. We aimed to evaluate the movement-range of lenses and optic nerves and its influence on dose distribution of several planning techniques. METHODS: Ten volunteers underwent MRI scans in various gaze directions (neutral, left, right, cranial, caudal). Lenses, orbital optic nerves, optic discs and CSI target volumes were delineated. 36-Gy cranial irradiation plans were constructed on synthetic CT images in neutral gaze, with Volumetric Modulated Arc Therapy, pencil-beam scanning proton therapy, and 3D-conventional photons. Movement-amplitudes of lenses and optic discs were analyzed, and influence of gaze direction on lens and orbital optic nerve dose distribution. RESULTS: Mean eye structures’ shift from neutral position was greatest in caudal gaze; −5.8±1.2 mm (±SD) for lenses and 7.0±2.0 mm for optic discs. In 3D-conventional plans, caudal gaze decreased Mean Lens Dose (MLD). In VMAT and proton plans, eye movements mainly increased MLD and diminished D98 orbital optic nerve (D98(OON)) coverage; mean MLD increased up to 5.5 Gy [total ΔMLD range −8.1 to 10.0 Gy], and mean D98(OON) decreased up to 3.3 Gy [total ΔD98(OON) range −13.6 to 1.2 Gy]. VMAT plans optimized for optic disc Internal Target Volume and lens Planning organ-at-Risk Volume resulted in higher MLD over gaze directions. D98(OON) became ≥95% of prescribed dose over 95/100 evaluated gaze directions, while all-gaze bilateral D98(OON) significantly changed in 1 of 10 volunteers. CONCLUSION: With modern CSI techniques, eye movements result in higher lens doses and a mean detriment for orbital optic nerve dose coverage of <10% of prescribed dose
Novel VHH-Based Tracers with Variable Plasma Half-Lives for Imaging of CAIX-Expressing Hypoxic Tumor Cells
Hypoxic areas are present in the majority of solid tumors, and hypoxia is associated with resistance to therapies and poor outcomes. A transmembrane protein that is upregulated by tumor cells that have adapted to hypoxic conditions is carbonic anhydrase IX (CAIX). Therefore, noninvasive imaging of CAIX could be of prognostic value, and it could steer treatment strategies. The aim of this study was to compare variants of CAIX-binding VHH B9, with and without a C-terminal albumin-binding domain with varying affinity (ABDlow and ABDhigh), for SPECT imaging of CAIX expression. The binding affinity and internalization of the various B9-variants were analyzed using SK-RC-52 cells. Biodistribution studies were performed in mice with subcutaneous SCCNij153 human head and neck cancer xenografts. Tracer uptake was determined by ex vivo radioactivity counting and visualized by SPECT/CT imaging. Furthermore, autoradiography images of tumor sections were spatially correlated with CAIX immunohistochemistry. B9-variants demonstrated a similar moderate affinity for CAIX in vitro. Maximal tumor uptake and acceptable tumor-to-blood ratios were found in the SCCNij153 model at 4 h post injection for [111In]In-DTPA-B9 (0.51 ± 0.08%ID/g and 8.1 ± 0.85, respectively), 24 h post injection for [111In]In-DTPA-B9-ABDlow (2.39 ± 0.44%ID/g and 3.66 ± 0.81, respectively) and at 72 h post injection for [111In]In-DTPA-B9-ABDhigh (8.7 ± 1.34%ID/g and 2.43 ± 0.15, respectively). An excess of unlabeled monoclonal anti-CAIX antibody efficiently inhibited tumor uptake of [111In]In-DTPA-B9, while only a partial reduction of [111In]In-DTPA-B9-ABDlow and [111In]In-DTPA-B9-ABDhigh uptake was found. Immunohistochemistry and autoradiography images showed colocalization of all B9-variants with CAIX expression; however, [111In]In-DTPA-B9-ABDlow and [111In]In-DTPA-B9-ABDhigh also accumulated in non-CAIX expressing regions. Tumor uptake of [111In]In-DTPA-B9-ABDlow and [111In]In-DTPA-B9-ABDhigh, but not of [111In]In-DTPA-B9, could be visualized with SPECT/CT imaging. In conclusion, [111In]In-DTPA-B9 has a high affinity to CAIX and shows specific targeting to CAIX in head and neck cancer xenografts. The addition of ABD prolonged plasma half-life, increased tumor uptake, and enabled SPECT/CT imaging. This uptake was, however, partly CAIX- independent, precluding the ABD-tracers for use in hypoxia quantification in this tumor type
Towards homogenization of total body irradiation practices in pediatric patients across SIOPE affiliated centers. A survey by the SIOPE radiation oncology working group
BACKGROUND AND PURPOSE: To reduce relapse risk, Total Body Irradiation (TBI) is part of conditioning regimens for hematopoietic stem cell transplantation (HSCT) in pediatric acute leukemia. The study purpose was to evaluate clinical practices regarding TBI, such as fractionation, organ shielding and delivery techniques, among SIOPE affiliated radiotherapy centers. METHODS: An electronic survey was sent out to 233 SIOPE affiliated centers, containing 57 questions about clinical practice of TBI. Surveys could be answered anonymously. RESULTS: From over 25 countries, 82 responses were collected. For TBI-performing centers, 40/48 irradiated ≤10 pediatric patients annually (range: 1-2 to >25). Most indications concerned acute lymphoblastic leukemia (ALL) or acute myeloid leukemia (AML). Four different fractionation schedules were used, of which 12 Gy in 6 fractions was applied in 91% for ALL and 86% for AML. Dose reduction to the lungs, mostly to a mean dose of 8-10 Gy, was applied by 28/33 centers for ALL and 19/21 centers for AML, in contrast to much less applied dose reduction to the kidneys (7/33 ALL and 7/21 AML), thyroid (2/33 ALL and 2/21 AML), liver (4/33 ALL and 3/21 AML) and lenses (4/33 ALL and 4/21 AML). Conventional TBI techniques were used by 24/29 responding centers, while 5/29 used advanced optimized planning techniques. CONCLUSION: Across SIOPE, there is a high level of uniformity in fractionation and use of lung shielding. Practices vary regarding other organs-at-risk shielding and implementation of advanced techniques. A SIOPE radiotherapy working group will be established to define international guidelines for pediatric TBI
Technical recommendations for implementation of Volumetric Modulated Arc Therapy and Helical Tomotherapy Total Body Irradiation
As a component of myeloablative conditioning before allogeneic hematopoietic stem cell transplantation (HSCT), Total Body Irradiation (TBI) is employed in radiotherapy centers all over the world. In recent and coming years, many centers are changing their technical setup from a conventional TBI technique to multi-isocenter conformal arc therapy techniques such as Volumetric Modulated Arc Therapy (VMAT) or Helical Tomotherapy (HT). These techniques allow better homogeneity and control of the target prescription dose, and provide more freedom for individualized organ-at-risk sparing. The technical design of multi-isocenter/multi-plan conformal TBI is complex and should be developed carefully. A group of early adopters with conformal TBI experience using different treatment machines and treatment planning systems came together to develop technical recommendations and share experiences, in order to assist departments wishing to implement conformal TBI, and to provide ideas for standardization of practices
ESTRO ACROP and SIOPE recommendations for myeloablative total body irradiation in children
Background and purpose: Myeloablative Total Body Irradiation (TBI) is an important modality in conditioning for allogeneic hematopoietic stem cell transplantation (HSCT), especially in children with high-risk acute lymphoblastic leukemia (ALL). TBI practices are heterogeneous and institution-specific. Since TBI is associated with multiple late adverse effects, recommendations may help to standardize practices and improve the outcome versus toxicity ratio for children. Material and methods: The European Society for Paediatric Oncology (SIOPE) Radiotherapy TBI Working Group together with ESTRO experts conducted a literature search and evaluation regarding myeloablative TBI techniques and toxicities in children. Findings were discussed in bimonthly virtual meetings and consensus recommendations were established. Results: Myeloablative TBI in HSCT conditioning is mostly performed for high-risk ALL patients or patients with recurring hematologic malignancies. TBI is discouraged in children <3–4 years old because of increased toxicity risk. Publications regarding TBI are mostly retrospective studies with level III–IV evidence. Preferential TBI dose in children is 12–14.4 Gy in 1.6–2 Gy fractions b.i.d. Dose reduction should be considered for the lungs to <8 Gy, for the kidneys to ≤10 Gy, and for the lenses to <12 Gy, for dose rates ≥6 cGy/min. Highly conformal techniques i.e. TomoTherapy and VMAT TBI or Total Marrow (and/or Lymphoid) Irradiation as implemented in several centers, improve dose homogeneity and organ sparing, and should be evaluated in studies. Conclusions: These ESTRO ACROP SIOPE recommendations provide expert consensus for conventional and highly conformal myeloablative TBI in children, as well as a supporting literature overview of TBI techniques and toxicities
Risk of benign meningioma after childhood cancer in the DCOG-LATER cohort:contributions of radiation dose, exposed cranial volume, and age
Pediatric cranial radiotherapy (CrRT) markedly increases risk of meningiomas. We studied meningioma risk factors with emphasis on independent and joint effects of CrRT dose, exposed cranial volume, exposure age, and chemotherapy. The Dutch Cancer Oncology GroupLong-Term Effects after Childhood Cancer (DCOG-LATER) cohort includes 5-year childhood cancer survivors (CCSs) whose cancers were diagnosed in 19632001. Histologically confirmed benign meningiomas were identified from the population-based Dutch Pathology Registry (PALGA; 19902015). We calculated cumulative meningioma incidence and used multivariable Cox regression and linear excess relative risk (ERR) modeling. Among 5843 CCSs (median follow-up: 23.3 y, range: 5.052.2 y), 97 developed a benign meningioma, including 80 after full- and 14 after partial-volume CrRT. Compared with CrRT doses of 119 Gy, no CrRT was associated with a low meningioma risk (hazard ratio [HR] = 0.04, 95% CI: 0.010.15), while increased risks were observed for CrRT doses of 2039 Gy (HR = 1.66, 95% CI: 0.833.33) and 40+ Gy (HR = 2.81, 95% CI: 1.306.08). CCSs whose cancers were diagnosed before age 5 versus 1017 years showed significantly increased risks (HR = 2.38, 95% CI: 1.394.07). In this dose-adjusted model, volume was not significantly associated with increased risk (HR full vs partial = 1.66, 95% CI: 0.863.22). Overall, the ERR/Gy was 0.30 (95% CI: 0.03unknown). Dose effects did not vary significantly according to exposure age or CrRT volume. Cumulative incidence after any CrRT was 12.4% (95% CI: 9.8%15.2%) 40 years after primary cancer diagnosis. Among chemotherapy agents (including methotrexate and cisplatin), only carboplatin (HR = 3.55, 95% CI: 1.627.78) appeared associated with meningioma risk. However, we saw no carboplatin dose-response and all 9 exposed cases had high-dose CrRT. After CrRT 1 in 8 survivors developed late meningioma by age 40 years, associated with radiation dose and exposure age, relevant for future treatment protocols and awareness among survivors and physicians
Total Body Irradiation in Haematopoietic Stem Cell Transplantation for Paediatric Acute Lymphoblastic Leukaemia:Review of the Literature and Future Directions
Total body irradiation (TBI) has been a pivotal component of the conditioning regimen for allogeneic myeloablative haematopoietic stem cell transplantation (HSCT) in very-high-risk acute lymphoblastic leukaemia (ALL) for decades, especially in children and young adults. The myeloablative conditioning regimen has two aims: (1) to eradicate leukaemic cells, and (2) to prevent rejection of the graft through suppression of the recipient's immune system. Radiotherapy has the advantage of achieving an adequate dose effect in sanctuary sites and in areas with poor blood supply. However, radiotherapy is subject to radiobiological trade-offs between ALL cell destruction, immune and haematopoietic stem cell survival, and various adverse effects in normal tissue. To diminish toxicity, a shift from single-fraction to fractionated TBI has taken place. However, HSCT and TBI are still associated with multiple late sequelae, leaving room for improvement. This review discusses the past developments of TBI and considerations for dose, fractionation and dose-rate, as well as issues regarding TBI setup performance, limitations and possibilities for improvement. TBI is typically delivered using conventional irradiation techniques and centres have locally developed heterogeneous treatment methods and ways to achieve reduced doses in several organs. There are, however, limitations in options to shield organs at risk without compromising the anti-leukaemic and immunosuppressive effects of conventional TBI. Technological improvements in radiotherapy planning and delivery with highly conformal TBI or total marrow irradiation (TMI), and total marrow and lymphoid irradiation (TMLI) have opened the way to investigate the potential reduction of radiotherapy-related toxicities without jeopardising efficacy. The demonstration of the superiority of TBI compared with chemotherapy-only conditioning regimens for event-free and overall survival in the randomised For Omitting Radiation Under Majority age (FORUM) trial in children with high-risk ALL makes exploration of the optimal use of TBI delivery mandatory. Standardisation and comprehensive reporting of conventional TBI techniques as well as cooperation between radiotherapy centres may help to increase the ratio between treatment outcomes and toxicity, and future studies must determine potential added benefit of innovative conformal techniques to ultimately improve quality of life for paediatric ALL patients receiving TBI-conditioned HSCT