6,035 research outputs found

    Maximum Normalized Rate as a Flying Qualities Parameter

    Get PDF
    Discrete attitude commands have become a standard task for flying qualities evaluation and control system testing. Much pilot opinion data is now available for ground-based and in-flight simulations, but adequate performance measures and prediction methods have not been established. The Step Target Tracking Prediction method, introduced in 1978, correlated time-on-target and rms tracking data with NT-33 in-flight longitudinal simulations, but did not employ parameters easily measured in manned flight and simulation. Recent application of the Step Target Tracking Prediction method to lateral flying qualities analysis has led to a new measure of performance. This quantity, called Maximum Normalized Rate (MNR), reflects the greatest attitude rate a pilot can employ during a discrete maneuver without excessive overshoot and oscillation. MNR correlates NT-33 lateral pilot opinion ratings well, and is easily measured during flight test or simulation. Futhermore, the Step Target MNR method can be used to analyze large amplitude problems concerning rate limiting and nonlinear aerodynamics

    Human impact on mid- and late Holocene vegetation in south Cumbria, UK

    Full text link

    Spatiotemporal dispersion and wave envelopes with relativistic and pseudorelativistic characteristics

    Get PDF
    A generic nonparaxial model for pulse envelopes is presented. Classic Schro¨dinger-type descriptions of wave propagation have their origins in slowly-varying envelopes combined with a Galilean boost to the local time frame. By abandoning these two simplifications, a picture of pulse evolution emerges in which frame-of-reference considerations and space-time transformations take center stage. A wide range of effects, analogous to those in special relativity, then follows for both linear and nonlinear systems. Explicit demonstration is presented through exact bright and dark soliton pulse solutions

    All-electronic frequency stabilization of a DFB laser diode

    Get PDF
    A laser diode’s junction voltage is a sensitive measure of its temperature and can be used in a thermal control feedback loop. To compensate for the temperature dependence of the laser’s internal resistance, we have measured the dynamic resistance, ∂V/∂I, by modulating the injection current and measuring the demodulated voltage. The junction voltage was thus controlled while operating at fixed DC injection current. Over an external temperature range of 15°C to 35°C, this stabilised the centre frequency (wavelength) of a 1651 nm DFB laser diode with a residual mean frequency shift of 60 MHz (0.5pm), less than the uncertainty on the centre frequency of 80 MHz (0.7 pm). Under the same conditions, conventional thermistor control gave a systematic wavelength shift of −8.4 GHz (−76 pm), and control of the uncompensated forward voltage gave a shift of 9.9 GHz (90 pm)
    • …
    corecore