26 research outputs found

    Transformation and representation in similarity.

    Get PDF
    Similarity, being a psychological notion, involves the comparison of finite object representations. The specific nature and complexity of these representations is a matter of fierce theoretical debate traditionally, similarity research was dominated by the spatial and featural account. In the spatial account, similarity is determined by the distance between objects in a psychological space. Alternatively, the featural account proposes that similarity is determined by matching objects' features. Despite the empirical success of these accounts, the object representations they posit are regarded too simple and specific to deal with more complex objects. Therefore, two structural accounts have been developed: structural alignment (SA) and Representational Distortion (RD). This aim of this thesis was to further establish one particular structural account RD as a general framework for understanding the similarity between object representations. Specifically, RD measures similarity by the complexity of the transformation that "distorts" one representation into the other. This RD approach is investigated in detail by testing a detailed set of transformational predictions (coding scheme) within a rich stimulus domain. These predictions are tested through experiments and modelling that utilise both a) explicit measures (ratings, forced-choice), and, for the first time, b) implicit measures (reaction time, same-different errors & spontaneous categorisation). Moreover, RD is compared empirically with both traditional and alignment models of similarity. Overall, the results suggest that similarity can be best understood by transformational relationships in a number of contexts. The performance of RD in both explicit and implicit measures is made more compelling by the fact that rival accounts fundamentally struggle to describe the sorts of relationships that are easily captured by RD. Finally, it is emphasised that RD is actually compatible with supposedly rival approaches and can incorporate theoretically these accounts, both traditional and structural, under one general framework

    Polygenic risk for Alzheimer's disease shapes hippocampal scene-selectivity

    Get PDF
    Preclinical models of Alzheimer’s disease (AD) suggest APOE modulates brain function in structures vulnerable to AD pathophysiology. However, genome-wide association studies now demonstrate that AD risk is shaped by a broader polygenic architecture, estimated via polygenic risk scoring (AD-PRS). Despite this breakthrough, the effect of AD-PRS on brain function in young individuals remains unknown. In a large sample (N = 608) of young, asymptomatic individuals, we measure the impact of both (i) APOE and (ii) AD-PRS on a vulnerable cortico-limbic scene-processing network heavily implicated in AD pathophysiology. Integrity of this network, which includes the hippocampus (HC), is fundamental for maintaining cognitive function during ageing. We show that AD-PRS, not APOE, selectively influences activity within the HC in response to scenes, while other perceptual nodes remained intact. This work highlights the impact of polygenic contributions to brain function beyond APOE, which could aid potential therapeutic/interventional strategies in the detection and prevention of AD

    Distinct contributions of the fornix and inferior longitudinal fasciculus to episodic and semantic autobiographical memory

    Get PDF
    Autobiographical memory (AM) is multifaceted, incorporating the vivid retrieval of contextual detail (episodic AM), together with semantic knowledge that infuses meaning and coherence into past events (semantic AM). While neuropsychological evidence highlights a role for the hippocampus and anterior temporal lobe (ATL) in episodic and semantic AM, respectively, it is unclear whether these constitute dissociable large-scale AM networks. We used high angular resolution diffusion-weighted imaging and constrained spherical deconvolution-based tractography to assess white matter microstructure in 27 healthy young adult participants who were asked to recall past experiences using word cues. Inter-individual variation in the microstructure of the fornix (the main hippocampal input/output pathway) related to the amount of episodic, but not semantic, detail in AMs e independent of memory age. Conversely, microstructure of the inferior longitudinal fasciculus, linking occipitotemporal regions with ATL, correlated with semantic, but not episodic, AMs. Further, these significant correlations remained when controlling for hippocampal and ATL grey matter volume, respectively. This striking correlational double dissociation supports the view that distinct, large-scale distributed brain circuits underpin context and concepts in AM

    Ultra-high-field fMRI reveals a role for the subiculum in scene perceptual discrimination

    Get PDF
    Recent “representational” accounts suggest a key role for the hippocampus in complex scene perception. Due to limitations in scanner field strength, however, the functional neuroanatomy of hippocampal-dependent scene perception is unknown. Here, we applied 7 T high-resolution functional magnetic resonance imaging (fMRI) alongside a perceptual oddity task, modified from nonhuman primate studies. This task requires subjects to discriminate highly similar scenes, faces, or objects from multiple viewpoints, and has revealed selective impairments during scene discrimination following hippocampal lesions. Region-of-interest analyses identified a preferential response in the subiculum subfield of the hippocampus during scene, but not face or object, discriminations. Notably, this effect was in the anteromedial subiculum and was not modulated by whether scenes were subsequently remembered or forgotten. These results highlight the value of ultra-high-field fMRI in generating more refined, anatomically informed, functional accounts of hippocampal contributions to cognition, and a unique role for the human subiculum in discrimination of complex scenes from different viewpoints

    Dissociable roles of the inferior longitudinal fasciculus and fornix in face and place perception

    Get PDF
    We tested a novel hypothesis, generated from representational accounts of medial temporal lobe (MTL) function, that the major white matter tracts converging on perirhinal cortex (PrC) and hippocampus (HC) would be differentially involved in face and scene perception, respectively. Diffusion tensor imaging was applied in healthy participants alongside an odd-one-out paradigm sensitive to PrC and HC lesions in animals and humans. Microstructure of inferior longitudinal fasciculus (ILF, connecting occipital and ventro-anterior temporal lobe, including PrC) and fornix (the main HC input/output pathway) correlated with accuracy on odd-one-out judgements involving faces and scenes, respectively. Similarly, blood oxygen level-dependent (BOLD) response in PrC and HC, elicited during oddity judgements, was correlated with face and scene oddity performance, respectively. We also observed associations between ILF and fornix microstructure and category-selective BOLD response in PrC and HC, respectively. These striking three-way associations highlight functionally dissociable, structurally instantiated MTL neurocognitive networks for complex face and scene perception

    Does ipsilateral remapping following hand loss impact motor control of the intact hand?

    Get PDF
    What happens once a cortical territory becomes functionally redundant? We studied how the brain and behaviour change for the remaining hand in humans (male and female) with either a missing hand from birth (one-handers) or due to amputation. Previous studies reported that in amputees, but not in one-handers, there is increased ipsilateral activity in the somatosensory territory of the missing hand (i.e., remapping). We used a complex finger task to explore whether this observed remapping in amputees involves recruiting more neural resources to support the intact hand to meet greater motor control demand. Using basic fMRI analysis, we found that only amputees had more ipsilateral activity when motor demand increased, however this did not match any noticeable improvement in their task performance. More advanced multivariate fMRI analysis showed that amputees had stronger and more typical representation – relative to controls’ contralateral hand representation – compared to one-handers. This suggests that in amputees, both hand areas work together more collaboratively, potentially reflecting the intact hand's efference copy. One-handers struggled to learn difficult finger configurations, but this did not translate to differences in univariate or multivariate activity relative to controls. Additional white matter analysis provided conclusive evidence that the structural connectivity between the two hand areas did not vary across groups. Together, our results suggest that enhanced activity in the missing hand territory may not reflect intact hand function. Instead, we suggest that plasticity is more restricted than generally assumed and may depend on the availability of homologous pathways acquired early in life

    Neurochemical correlates of scene processing in the precuneus/posterior cingulate cortex: A multimodal fMRI and 1H-MRS study

    Get PDF
    Precuneus/posterior cingulate cortex (PCu/PCC) are key components of a midline network, activated during rest but also in tasks that involve construction of scene or situation models. Despite growing interest in PCu/PCC functional alterations in disease and disease risk, the underlying neurochemical modulators of PCu/PCC's task‐evoked activity are largely unstudied. Here, a multimodal imaging approach was applied to investigate whether interindividual differences in PCu/PCC fMRI activity, elicited during perceptual discrimination of scene stimuli, were correlated with local brain metabolite levels, measured during resting‐state 1H‐MRS. Forty healthy young adult participants completed an fMRI perceptual odd‐one‐out task for scenes, objects and faces. 1H‐MRS metabolites N‐acetyl‐aspartate (tNAA), glutamate (Glx) and γ‐amino‐butyric acid (GABA+) were quantified via PRESS and MEGA‐PRESS scans in a PCu/PCC voxel and an occipital (OCC) control voxel. Whole brain fMRI revealed a cluster in right dorsal PCu/PCC that showed a greater BOLD response to scenes versus faces and objects. When extracted from an independently defined PCu/PCC region of interest, scene activity (vs. faces and objects and also vs. baseline) was positively correlated with PCu/PCC, but not OCC, tNAA. A voxel‐wise regression analysis restricted to the PCu/PCC 1H‐MRS voxel area identified a significant PCu/PCC cluster, confirming the positive correlation between scene‐related BOLD activity and PCu/PCC tNAA. There were no correlations between PCu/PCC activity and Glx or GABA+ levels. These results demonstrate, for the first time, that scene activity in PCu/PCC is linked to local tNAA levels, identifying a neurochemical influence on interindividual differences in the task‐driven activity of a key brain hub

    Curious connections: white matter pathways supporting individual differences in epistemic and perceptual curiosity

    Get PDF
    Across the lifespan, curiosity motivates us to learn, yet curiosity varies strikingly between individuals. Such individual differences have been shown for two distinct dimensions of curiosity: epistemic curiosity (EC), the desire to acquire knowledge about facts, and perceptual curiosity (PC), the desire for sensory information. It is not known, however, whether both dimensions of curiosity depend on different brain networks and whether inter-individual differences in curiosity depend on variation in anatomical connectivity within these networks. Here, we investigated the neuroanatomical connections underpinning individual variation in trait curiosity. Fifty-one female participants underwent a two-shell diffusion MRI sequence and completed questionnaires measuring EC and PC. Using deterministic spherical deconvolution tractography we extracted microstructural metrics (fractional anisotropy (FA) and mean diffusivity (MD)) from two key white matter tracts: the fornix (implicated in novelty processing, exploration, information seeking and episodic memory) and the inferior longitudinal fasciculus (ILF) (implicated in semantic learning and memory). In line with our predictions, we found that EC – but not PC – correlated with ILF microstructure. Fornix microstructure, in contrast, correlated with both EC and PC with posterior hippocampal fornix fibres - associated with posterior hippocampal network connectivity - linked to PC specifically. These findings suggest that differences in distinct dimensions of curiosity map systematically onto specific white matter tracts underlying well characterized brain networks. Furthermore, the results pave the way to study the anatomical substrates of inter-individual differences in dimensions of trait curiosity that motivate the learning of distinct forms of knowledge and skills

    Increased posterior default mode network activity and structural connectivity in young adult APOE-Δ4 carriers: a multi-modal imaging investigation

    Get PDF
    Young adult APOE-Δ4 carriers show increased activity in posterior regions of the default mode network (pDMN), but how this is related to structural connectivity is unknown. Thirty young adults (one half of whom were APOE-Δ4 carriers; mean age 20 years) were scanned using both diffusion and functional magnetic resonance imaging. The parahippocampal cingulum bundle (PHCB)—which links the pDMN and the medial temporal lobe—was manually delineated in individual participants using deterministic tractography. Measures of tract microstructure (mean diffusivity and fractional anisotropy) were then extracted from these tract delineations. APOE-Δ4 carriers had lower mean diffusivity and higher fractional anisotropy relative to noncarriers in PHCB, but not in a control tract (the inferior longitudinal fasciculus). Furthermore, PHCB microstructure was selectively associated with pDMN (and medial temporal lobe) activity during a scene discrimination task known to be sensitive to Alzheimer's disease. These findings are consistent with a lifespan view of Alzheimer's disease risk, where early-life, connectivity-related changes in specific, vulnerable “hubs” (e.g., pDMN) lead to increased neural activity. Critically, such changes may reflect reduced network efficiency/flexibility in APOE-Δ4 carriers, which in itself may portend a faster decline in connectivity over the lifespan and ultimately trigger early amyloid-ÎČ deposition in later life
    corecore