7,503 research outputs found
Extending Quantum Coherence in Diamond
We experimentally demonstrate over two orders of magnitude increase in the
coherence time of nitrogen vacancy centres in diamond by implementing
decoupling techniques. We show that equal pulse spacing decoupling performs
just as well as non-periodic Uhrig decoupling and has the additional benefit
that it allows us to take advantage of "revivals" in the echo (due to the
coherent nature of the bath) to explore the longest coherence times. At short
times, we can extend the coherence of particular quantum states out from
T_2*=2.7 us out to an effective T_2 > 340 us. For preserving arbitrary states
we show the experimental importance of using pulse sequences, that through
judicious choice of the phase of the pulses, compensate the imperfections of
individual pulses for all input states. At longer times we use these
compensated sequences to enhance the echo revivals and show a coherence time of
over 1.6 ms in ultra-pure natural abundance 13C diamond.Comment: 7 pages, 7 figures; minor syntax/typo. changes and updated reference
The diamond Nitrogen-Vacancy center as a probe of random fluctuations in a nuclear spin ensemble
New schemes that exploit the unique properties of Nitrogen-Vacancy (NV)
centers in diamond are presently being explored as a platform for
high-resolution magnetic sensing. Here we focus on the ability of a NV center
to monitor an adjacent mesoscopic nuclear spin bath. For this purpose, we
conduct comparative experiments where the NV spin evolves under the influence
of surrounding 13C nuclei or, alternatively, in the presence of asynchronous AC
fields engineered to emulate bath fluctuations. Our study reveals substantial
differences that underscore the limitations of the semi-classical picture when
interpreting and predicting the outcome of experiments designed to probe small
nuclear spin ensembles. In particular, our study elucidates the NV center
response to bath fluctuations under common pulse sequences, and explores a
detection protocol designed to probe time correlations of the nuclear spin bath
dynamics. Further, we show that the presence of macroscopic nuclear spin order
is key to the emergence of semi-classical spin magnetometry.Comment: 30 pages, 4 figure
Magnetometry of random AC magnetic fields using a single Nitrogen-Vacancy center
We report on the use of a single NV center to probe fluctuating AC magnetic
fields. Using engineered currents to induce random changes in the field
amplitude and phase, we show that stochastic fluctuations reduce the NV center
sensitivity and, in general, make the NV response field-dependent. We also
introduce two modalities to determine the field spectral composition, unknown a
priori in a practical application. One strategy capitalizes on the generation
of AC-field-induced coherence 'revivals', while the other approach uses the
time-tagged fluorescence intensity record from successive NV observations to
reconstruct the AC field spectral density. These studies are relevant for
magnetic sensing in scenarios where the field of interest has a non-trivial,
stochastic behavior, such as sensing unpolarized nuclear spin ensembles at low
static magnetic fields.Comment: 11 pages, 3 figure
Structure and clumping in the fast wind of NGC6543
Far-UV spectroscopy from the FUSE satellite is analysed to uniquely probe
spatial structure and clumping in the fast wind of the central star of the
H-rich planetary nebula NGC6543 (HD164963). Time-series data of the unsaturated
PV 1118, 1128 resonance line P Cygni profiles provide a very sensitive
diagnostic of variable wind conditions in the outflow. We report on the
discovery of episodic and recurrent optical depth enhancements in the PV
absorption troughs, with some evidence for a 0.17-day modulation time-scale.
SEI line-synthesis modelling is used to derive physical properties, including
the optical depth evolution of individual `events'. The characteristics of
these features are essentially identical to the `discrete absorption
components' (DACs) commonly seen in the UV lines of massive OB stars. We have
also employed the unified model atmosphere code CMFGEN to explore spectroscopic
signatures of clumping, and report in particular on the clear sensitivity of
the PV lines to the clump volume filling factor. The results presented here
have implications for the downward revision of mass-loss rates in PN central
stars. We conclude that the temporal structures seen in the PV lines of NGC6543
likely have a physical origin that is similar to that operating in massive,
luminous stars, and may be related to near-surface perturbations caused by
stellar pulsation and/or magnetic fields.Comment: 11 pages, 11 figures. Accepted for publication in MNRA
Universal Control of Nuclear Spins Via Anisotropic Hyperfine Interactions
We show that nuclear spin subsystems can be completely controlled via
microwave irradiation of resolved anisotropic hyperfine interactions with a
nearby electron spin. Such indirect addressing of the nuclear spins via
coupling to an electron allows us to create nuclear spin gates whose
operational time is significantly faster than conventional direct addressing
methods. We experimentally demonstrate the feasibility of this method on a
solid-state ensemble system consisting of one electron and one nuclear spin.Comment: RevTeX4, 8 pages, 8 figure
Vitamin K catabolite inhibition of ovariectomy-induced bone loss: Structure–activity relationship considerations
The potential benefit of vitamin K as a therapeutic in osteoporosis is controversial and the vitamin K regimen being used clinically (45 mg/day) employs doses that are many times higher than required to ensure maximal gamma‐carboxylation of the vitamin K‐dependent bone proteins. We therefore tested the hypothesis that vitamin K catabolites, 5‐carbon (CAN5C) and 7‐carbon carboxylic acid (CAN7C) aliphatic side‐chain derivatives of the naphthoquinone moiety exert an osteotrophic role consistent with the treatment of osteoporosis
Feasibility and tolerability of whole-body, low-intensity vibration and its effects on muscle function and bone in patients with dystrophinopathies: a pilot study.
IntroductionDystrophinopathies are X-linked muscle degenerative disorders that result in progressive muscle weakness complicated by bone loss. This study's goal was to evaluate feasibility and tolerability of whole-body, low-intensity vibration (WBLIV) and its potential effects on muscle and bone in patients with Duchenne or Becker muscular dystrophy.MethodsThis 12-month pilot study included 5 patients (age 5.9-21.7 years) who used a low-intensity Marodyne LivMD plate vibrating at 30-90 Hz for 10 min/day for the first 6 months. Timed motor function tests, myometry, and peripheral quantitative computed tomography were performed at baseline and at 6 and 12 months.ResultsMotor function and lower extremity muscle strength remained either unchanged or improved during the intervention phase, followed by deterioration after WBLIV discontinuation. Indices of bone density and geometry remained stable in the tibia.ConclusionsWBLIV was well tolerated and appeared to have a stabilizing effect on lower extremity muscle function and bone measures. Muscle Nerve 55: 875-883, 2017
Functional Approach to Stochastic Inflation
We propose functional approach to the stochastic inflationary universe
dynamics. It is based on path integral representation of the solution to the
differential equation for the scalar field probability distribution. In the
saddle-point approximation scalar field probability distributions of various
type are derived and the statistics of the inflationary-history-dependent
functionals is developed.Comment: 20 pages, Preprint BROWN-HET-960, uses phyzz
- …