156 research outputs found
Statistics of Lyapunov exponent in one-dimensional layered systems
Localization of acoustic waves in a one dimensional water duct containing
many randomly distributed air filled blocks is studied. Both the Lyapunov
exponent and its variance are computed. Their statistical properties are also
explored extensively. The results reveal that in this system the single
parameter scaling is generally inadequate no matter whether the frequency we
consider is located in a pass band or in a band gap. This contradicts the
earlier observations in an optical case. We compare the results with two
optical cases and give a possible explanation of the origin of the different
behaviors.Comment: 6 pages revtex file, 6 eps figure
Coulomb scattering lifetime of a two-dimensional electron gas
Motivated by a recent tunneling experiment in a double quantum-well system,
which reports an anomalously enhanced electronic scattering rate in a clean
two-dimensional electron gas, we calculate the inelastic quasiparticle lifetime
due to electron-electron interaction in a single loop dynamically screened
Coulomb interaction within the random-phase-approximation. We obtain excellent
quantitative agreement with the inelastic scattering rates in the tunneling
experiment without any adjustable parameter, finding that the reported large
( a factor of six) disagreement between theory and experiment arises from
quantitative errors in the existing theoretical work and from the off-shell
energy dependence of the electron self-energy.Comment: 11 pages, RevTex, figures included. Also available at
http://www-cmg.physics.umd.edu/~lzheng
Late Cenozoic evolution of the eastern margin of the Tibetan Plateau: Inferences from 40Ar/39Ar and (U-th)/He thermochronology
High topography in central Asia is perhaps the most fundamental expression of the Cenozoic Indo-Asian collision, yet an understanding of the timing and rates of development of the Tibetan Plateau remains elusive. Here we investigate the Cenozoic thermal histories of rocks along the eastern margin of the plateau adjacent to the Sichuan Basin in an effort to determine when the steep topographic escarpment that characterizes this margin developed. Temperature-time paths inferred from 40Ar/39Ar thermochronology of biotite, multiple diffusion domain modeling of alkali feldspar40Ar release spectra, and (U-Th)/He thermochronology of zircon and apatite imply that rocks at the present-day topographic front of the plateau underwent slow cooling (<1°C/m.y.) from Jurassic times until the late Miocene or early Pliocene. The regional extent and consistency of thermal histories during this time period suggest the presence of a stable thermal structure and imply that regional denudation rates were low (<0.1 mm/yr for nominal continental geotherms). Beginning in the late Miocene or early Pliocene, these samples experienced a pronounced cooling event (>30°-50°C/m.y.) coincident with exhumation from inferred depths of ~8-10 km, at denudation rates of 1-2 mm/yr. Samples from the interior of the plateau continued to cool relatively slowly during the same time period (~3°C/m.y.), suggesting limited exhumation (1-2 km). However, these samples record a slight increase in cooling rate (from <1 to ~3°C/m.y.) at some time during the middle Tertiary; the tectonic significance of this change remains uncertain. Regardless, late Cenozoic denudation in this region appears to have been markedly heterogeneous, with the highest rates of exhumation focused at the topographic front of the plateau margin. We infer that the onset of rapid cooling at the plateau margin reflects the erosional response to the development of regionally significant topographic gradients between the plateau and the stable Sichuan Basin and thus marks the onset of deformation related to the development of the Tibetan Plateau in this region. The present margin of the plateau adjacent to and north of the Sichuan Basin is apparently no older than the late Miocene or early Pliocene (~5-12 Ma)
Localization of electromagnetic waves in a two dimensional random medium
Motivated by previous investigations on the radiative effects of the electric
dipoles embedded in structured cavities, localization of electromagnetic waves
in two dimensions is studied {\it ab initio} for a system consisting of many
randomly distributed two dimensional dipoles. A set of self-consistent
equations, incorporating all orders of multiple scattering of the
electromagnetic waves, is derived from first principles and then solved
numerically for the total electromagnetic field. The results show that
spatially localized electromagnetic waves are possible in such a simple but
realistic disordered system. When localization occurs, a coherent behavior
appears and is revealed as a unique property differentiating localization from
either the residual absorption or the attenuation effects
On the violation of the Fermi-liquid picture in two-dimensional systems owing to the Van-Hove singularities
We consider the two-dimensional t-t' Hubbard model with the Fermi level being
close to the van Hove singularities. The phase diagram of the model is
discussed. In a broad energy region the self-energy at the singularity points
has a nearly-linear energy dependence. The corresponding correction to the
density of states is proportional to ln^3(e). Both real- and imaginary part of
the self-energy increase near the quantum phase transition into magnetically
ordered or superconducting phase which implies violation of the Fermi-liquid
behavior. The application of the results to cuprates is discussed.Comment: 16 pages, RevTeX, 5 figures; The errors of the published version (PRB
64, 205105, 2001) are correcte
Have mirror micrometeorites been detected?
Slow-moving ( km/s) 'dark matter particles' have allegedly been
discovered in a recent experiment. We explore the possibility that these slow
moving dark matter particles are small mirror matter dust particles originating
from our solar system. Ways of further testing our hypothesis, including the
possibility of observing these dust particles in cryogenic detectors such as
NAUTILUS, are also discussed.Comment: Few changes, about 8 pages lon
Diffusive and localization behavior of electromagnetic waves in a two-dimensional random medium
In this paper, we discuss the transport phenomena of electromagnetic waves in
a two-dimensional random system which is composed of arrays of electrical
dipoles, following the model presented earlier by Erdogan, et al. (J. Opt. Soc.
Am. B {\bf 10}, 391 (1993)). A set of self-consistent equations is presented,
accounting for the multiple scattering in the system, and is then solved
numerically. A strong localization regime is discovered in the frequency
domain. The transport properties within, near the edge of and nearly outside
the localization regime are investigated for different parameters such as
filling factor and system size. The results show that within the localization
regime, waves are trapped near the transmitting source. Meanwhile, the
diffusive waves follow an intuitive but expected picture. That is, they
increase with travelling path as more and more random scattering incurs,
followed by a saturation, then start to decay exponentially when the travelling
path is large enough, signifying the localization effect. For the cases that
the frequencies are near the boundary of or outside the localization regime,
the results of diffusive waves are compared with the diffusion approximation,
showing less encouraging agreement as in other systems (Asatryan, et al., Phys.
Rev. E {\bf 67}, 036605 (2003).)Comment: 8 pages 9 figure
Polysaccharide length affects mycobacterial cell shape and antibiotic susceptibility
Microbial Biotechnolog
Do sensorimotor cortex activity, an individual's capacity for neuroplasticity, and psychological features during an episode of acute low back pain predict outcome at 6 months: a protocol for an Australian, multisite prospective, longitudinal cohort study
INTRODUCTION:Low back pain (LBP) is the leading cause of disability worldwide, with prevalence doubling in the past 14 years. To date, prognostic screening tools display poor discrimination and offer no net benefit of screening over and above a 'treat all' approach. Characteristics of the primary sensory (S1) and motor (M1) cortices may predict the development of chronic LBP, yet the prognostic potential of these variables remains unknown. The Understanding persistent Pain Where it ResiDes (UPWaRD) study aims to determine whether sensorimotor cortex activity, an individual's capacity for plasticity and psychosocial factors in the acute stage of pain, predict LBP outcome at 6 months. This paper describes the methods and analysis plan for the development of the prediction model. METHODS AND ANALYSIS:The study uses a multicentre prospective longitudinal cohort design with 6-month follow-up. 120 participants, aged 18 years or older, experiencing an acute episode of LBP (less than 6 weeks duration) will be included. Primary outcomes are pain and disability. ETHICS AND DISSEMINATION:Ethical approval has been obtained from Western Sydney University Human Research Ethics Committee (H10465) and from Neuroscience Research Australia (SSA: 16/002). Dissemination will occur through presentations at national and international conferences and publications in international peer-reviewed journals. TRIAL REGISTRATION NUMBER:ACTRN12619000002189; Pre-results.Luke C Jenkins, Wei-Ju Chang, Valentina Buscemi, Matthew Liston, Barbara Toson, Michael Nicholas, Thomas Graven-Nielsen, Michael Ridding, Paul W Hodges, James H McAuley, Siobhan M Schabru
- …