2,897 research outputs found
Predicting change in academic achievement : a model of peer experiences and self-system processes
The purpose of this study was to test a model of peer experiences and academic achievement among elementary school children. This model postulates that the quality of children's social relations (e.g., social preference) in the peer group can foster or inhibit feelings of connectedness (e.g., loneliness), which in turn affects children's perceptions of academic competence. Finally, perceptions of academic competence are hypothesized to predict change in academic achievement. Participants were 397 school children (206 girls, 191 boys; mean age = 108 months, range = 88–157 months). Results from structural equation modeling provided support for the proposed model. Discussion centers on the mediational role of self-system processes between children's social relations and change in academic achievement
The Use of Handheld X-Ray Fluorescence (XRF) Technology in Unraveling the Eruptive History of the San Francisco Volcanic Field, Arizona
While traditional geologic mapping includes the examination of structural relationships between rock units in the field, more advanced technology now enables us to simultaneously collect and combine analytical datasets with field observations. Information about tectonomagmatic processes can be gleaned from these combined data products. Historically, construction of multi-layered field maps that include sample data has been accomplished serially (first map and collect samples, analyze samples, combine data, and finally, readjust maps and conclusions about geologic history based on combined data sets). New instruments that can be used in the field, such as a handheld xray fluorescence (XRF) unit, are now available. Targeted use of such instruments enables geologists to collect preliminary geochemical data while in the field so that they can optimize scientific data return from each field traverse. Our study tests the application of this technology and projects the benefits gained by real-time geochemical data in the field. The integrated data set produces a richer geologic map and facilitates a stronger contextual picture for field geologists when collecting field observations and samples for future laboratory work. Real-time geochemical data on samples also provide valuable insight regarding sampling decisions by the field geologis
Switchable lasing in coupled multimode microcavities
We propose the new concept of a switchable multimode microlaser. As a
generic, realistic model of a multimode microresonator a system of two coupled
defects in a two-dimensional photonic crystal is considered. We demonstrate
theoretically that lasing of the cavity into one selected resonator mode can be
caused by injecting an appropriate optical pulse at the onset of laser action
(injection seeding). Temporal mode-to-mode switching by re-seeding the cavity
after a short cool-down period is demonstrated by direct numerical solution. A
qualitative analytical explanation of the mode switching in terms of the laser
bistability is presented.Comment: Accepted for publication in Physical Review Letters. Published,
somewhat shortened versio
Cremmer-Gervais r-matrices and the Cherednik Algebras of type GL2
We give an intepretation of the Cremmer-Gervais r-matrices for sl(n) in terms
of actions of elements in the rational and trigonometric Cherednik algebras of
type GL2 on certain subspaces of their polynomial representations. This is used
to compute the nilpotency index of the Jordanian r-matrices, thus answering a
question of Gerstenhaber and Giaquinto. We also give an interpretation of the
Cremmer-Gervais quantization in terms of the corresponding double affine Hecke
algebra.Comment: 6 page
Recommended from our members
DESCARTES: Development Environment for Simulating Hybrid Connectionist Architectures
The symbolic and subsymbolic paradigms each offer advantages and disadvantages in constructing models for understanding the processes of cognition. A number of research programs at U C L A utilize connectionist modeling strategies, ranging from distributed and localist spreading-activation networks to semantic networks with symbolic marker passing. As a way of combining and optimizing the advantages offered by different paradigms, we have started to explore hybrid networks, i.e. multiple processing mechanisms operating on a single network, or multiple networks operating in parallel under different paradigms. Unfortunately, existing tools do not allow the simulation of these types of hybrid connectionist architectures. To address this problem, we have developed a tool which enables us to create and operate these types of networks in a flexible and general way. W e present and describe the architecture and use of DESCARTES, a simulation environment developed to accomplish this type of integration
Effects on Breathing of Agonists to μ-opioid or GABA\u3csub\u3eA\u3c/sub\u3e Receptors Dialyzed into the Ventral Respiratory Column of Awake and Sleeping Goats
Pulmonary ventilation (V̇I) in awake and sleeping goats does not change when antagonists to several excitatory G protein-coupled receptors are dialyzed unilaterally into the ventral respiratory column (VRC). Concomitant changes in excitatory neuromodulators in the effluent mock cerebral spinal fluid (mCSF) suggest neuromodulatory compensation. Herein, we studied neuromodulatory compensation during dialysis of agonists to inhibitory G protein-coupled or ionotropic receptors into the VRC. Microtubules were implanted into the VRC of goats for dialysis of mCSF mixed with agonists to either μ-opioid (DAMGO) or GABAA (muscimol) receptors. We found: (1) V̇I decreased during unilateral but increased during bilateral dialysis of DAMGO, (2) dialyses of DAMGO destabilized breathing, (3) unilateral dialysis of muscimol increased V̇I, and (4) dialysis of DAMGO decreased GABA in the effluent mCSF. We conclude: (1) neuromodulatory compensation can occur during altered inhibitory neuromodulator receptor activity, and (2) the mechanism of compensation differs between G protein-coupled excitatory and inhibitory receptors and between G protein-coupled and inotropic inhibitory receptors
State-Dependent and -Independent Effects of Dialyzing Excitatory Neuromodulator Receptor Antagonists into the Ventral Respiratory Column
Unilateral dialysis of the broad-spectrum muscarinic receptor antagonist atropine (50 mM) into the ventral respiratory column [(VRC) including the pre-Bötzinger complex region] of awake goats increased pulmonary ventilation (V̇i) and breathing frequency (f), conceivably due to local compensatory increases in serotonin (5-HT) and substance P (SP) measured in effluent mock cerebral spinal fluid (mCSF). In contrast, unilateral dialysis of a triple cocktail of antagonists to muscarinic (atropine; 5 mM), neurokinin-1, and 5-HT receptors does not alter V̇i or f, but increases local SP. Herein, we tested hypotheses that 1) local compensatory 5-HT and SP responses to 50 mM atropine dialyzed into the VRC of goats will not differ between anesthetized and awake states; and 2) bilateral dialysis of the triple cocktail of antagonists into the VRC of awake goats will not alter V̇i or f, but will increase local excitatory neuromodulators. Through microtubules implanted into the VRC of goats, probes were inserted to dialyze mCSF alone (time control), 50 mM atropine, or the triple cocktail of antagonists. We found 1) equivalent increases in local 5-HT and SP with 50 mM atropine dialysis during wakefulness compared with isoflurane anesthesia, but V̇i and f only increased while awake; and 2) dialyses of the triple cocktail of antagonists increased V̇i, f, 5-HT, and SP
The Effects of Lesions in the Dorsolateral Pons on the Coordination of Swallowing and Breathing in Awake Goats
The purpose of this retrospective study was to gain insight into the contribution of the dorsolateral pons to the coordination of swallowing and breathing in awake goats. In 4 goats, cannulas were chronically implanted bilaterally through the lateral (LPBN) and medial (MPBN) parabrachial nuclei just dorsal to the Kölliker–Fuse nucleus (KFN). After \u3e2 weeks recovery from this surgery, the goats were studied for 5½ h on a control day, and on separate days after receiving 1 and 10 μl injections of ibotenic acid (IA) separated by 1 week. The frequency of swallows did not change during the control and 1 μl IA studies, but after injection of 10 μl IA, there was a transient 65% increase in frequency of swallows (P \u3c 0.05). Under control conditions swallows occurred throughout the respiratory cycle, where late-E swallows accounted for 67.6% of swallows. The distribution of swallow occurrence throughout the respiratory cycle was unaffected by IA injections. Consistent with the concept that swallowing is dominant over breathing, we found that swallows increased inspiratory (TI) and expiratory (TE) time and decreased tidal volume (VT) of the breath of the swallow (n) and/or the subsequent (n + 1) breath. Injections of 10 μl IA attenuated the normal increases in TI and TE and further attenuated VT of the n breath. Additionally, E and I swallows reset respiratory rhythm, but injection of 1 or 10 μl IA progressively attenuated this resetting, suggesting a decreased dominance over respiratory motor output with increasing IA injections. Post mortem histological analysis revealed about 50% fewer (P \u3c 0.05) neurons remained in the KFN, LPBN, and MPBN in lesioned compared to control goats. We conclude that dorsolateral pontine nuclei have a modulatory role in a hypothesized holarchical neural network regulating swallowing and breathing particularly contributing to the normal dominance of swallowing over breathing in both rhythm and motor pattern generation
In-Situ XRF Measurements in Lunar Surface Exploration Using Apollo Samples as a Standard
Samples collected during the Apollo lunar surface missions were sampled and returned to Earth by astronauts with varying degrees of geological experience. The technology used in these EVAs, or extravehicular activities, included nothing more advanced than traditional terrestrial field instruments: rock hammer, scoop, claw tool, and sample bags. 40 years after Apollo, technology is being developed that will allow for a high-resolution geochemical map to be created in the field real-time. Handheld x-ray fluorescence (XRF) technology is one such technology. We use handheld XRF to enable a broad in-situ characterization of a geologic site of interest based on fairly rapid techniques that can be implemented by either an astronaut or a robotic explorer. The handheld XRF instrument we used for this study was the Innov-X Systems Delta XRF spectrometer
Constraint-based, Single-point Approximate Kinetic Energy Functionals
We present a substantial extension of our constraint-based approach for
development of orbital-free (OF) kinetic-energy (KE) density functionals
intended for the calculation of quantum-mechanical forces in multi-scale
molecular dynamics simulations. Suitability for realistic system simulations
requires that the OF-KE functional yield accurate forces on the nuclei yet be
relatively simple. We therefore require that the functionals be based on DFT
constraints, local, dependent upon a small number of parameters fitted to a
training set of limited size, and applicable beyond the scope of the training
set. Our previous "modified conjoint" generalized-gradient-type functionals
were constrained to producing a positive-definite Pauli potential. Though
distinctly better than several published GGA-type functionals in that they gave
semi-quantitative agreement with Born-Oppenheimer forces from full Kohn-Sham
results, those modified conjoint functionals suffer from unphysical
singularities at the nuclei. Here we show how to remove such singularities by
introducing higher-order density derivatives. We give a simple illustration of
such a functional used for the dissociation energy as a function of bond length
for selected molecules.Comment: 16 pages, 9 figures, 2 tables, submitted to Phys. Rev.
- …