4,804 research outputs found
Crop yield literature review for AgRISTARS crops: Corn, soybeans, wheat, barley, sorghum, rice, cotton, and sunflowers
There are no author-identified significant results in this report
Two-stage fan. 3: Data and performance with rotor tip casing treatment, uniform and distorted inlet flows
A two stage fan with a 1st-stage rotor design tip speed of 1450 ft/sec, a design pressure ratio of 2.8, and corrected flow of 184.2 lbm/sec was tested with axial skewed slots in the casings over the tips of both rotors. The variable stagger stators were set in the nominal positions. Casing treatment improved stall margin by nine percentage points at 70 percent speed but decreased stall margin, efficiency, and flow by small amounts at design speed. Treatment improved first stage performance at low speed only and decreased second stage performance at all operating conditions. Casing treatment did not affect the stall line with tip radially distorted flow but improved stall margin with circumferentially distorted flow. Casing treatment increased the attenuation for both types of inlet flow distortion
Laboratory measurements and theoretical calculations of O_2 A band electric quadrupole transitions
Frequency-stabilized cavity ring-down spectroscopy was utilized to measure electric quadrupole transitions within the ^(16)O_2 A band, b^1Σ^+_g ← X^3Σ^-_g(0,0). We report quantitative measurements (relative uncertainties in intensity measurements from 4.4% to 11%) of nine ultraweak transitions in the ^NO, ^PO, ^RS, and ^TS branches with line intensities ranging from 3×10^(−30) to 2×10^(−29) cm molec.^(−1). A thorough discussion of relevant noise sources and uncertainties in this experiment and other cw-cavity ring-down spectrometers is given. For short-term averaging (t<100 s), we estimate a noise-equivalent absorption of 2.5×10^(−10) cm^(−1) Hz^(−1/2). The detection limit was reduced further by co-adding up to 100 spectra to yield a minimum detectable absorption coefficient equal to 1.8×10^(−11) cm^(−1), corresponding to a line intensity of ~2.5×10^(−31) cm molec.^(−1). We discuss calculations of electric quadrupole line positions based on a simultaneous fit of the ground and upper electronic state energies which have uncertainties <3 MHz, and we present calculations of electric quadrupole matrix elements and line intensities. The electric quadrupole line intensity calculations and measurements agreed on average to 5%, which is comparable to our average experimental uncertainty. The calculated electric quadrupole band intensity was 1.8(1)×10^(−27) cm molec.−1 which is equal to only ~8×10^(−6) of the magnetic dipole band intensity
Subsystem Pseudo-pure States
A critical step in experimental quantum information processing (QIP) is to
implement control of quantum systems protected against decoherence via
informational encodings, such as quantum error correcting codes, noiseless
subsystems and decoherence free subspaces. These encodings lead to the promise
of fault tolerant QIP, but they come at the expense of resource overheads.
Part of the challenge in studying control over multiple logical qubits, is
that QIP test-beds have not had sufficient resources to analyze encodings
beyond the simplest ones. The most relevant resources are the number of
available qubits and the cost to initialize and control them. Here we
demonstrate an encoding of logical information that permits the control over
multiple logical qubits without full initialization, an issue that is
particularly challenging in liquid state NMR. The method of subsystem
pseudo-pure state will allow the study of decoherence control schemes on up to
6 logical qubits using liquid state NMR implementations.Comment: 9 pages, 1 Figur
Principles of Control for Decoherence-Free Subsystems
Decoherence-Free Subsystems (DFS) are a powerful means of protecting quantum
information against noise with known symmetry properties. Although Hamiltonians
theoretically exist that can implement a universal set of logic gates on DFS
encoded qubits without ever leaving the protected subsystem, the natural
Hamiltonians that are available in specific implementations do not necessarily
have this property. Here we describe some of the principles that can be used in
such cases to operate on encoded qubits without losing the protection offered
by the DFS. In particular, we show how dynamical decoupling can be used to
control decoherence during the unavoidable excursions outside of the DFS. By
means of cumulant expansions, we show how the fidelity of quantum gates
implemented by this method on a simple two-physical-qubit DFS depends on the
correlation time of the noise responsible for decoherence. We further show by
means of numerical simulations how our previously introduced "strongly
modulating pulses" for NMR quantum information processing can permit
high-fidelity operations on multiple DFS encoded qubits in practice, provided
that the rate at which the system can be modulated is fast compared to the
correlation time of the noise. The principles thereby illustrated are expected
to be broadly applicable to many implementations of quantum information
processors based on DFS encoded qubits.Comment: 12 pages, 7 figure
Machine Learning for Understanding and Predicting Injuries in Football
Attempts to better understand the relationship between training and competition load and injury in football are essential for helping to understand adaptation to training programmes, assessing fatigue and recovery, and minimising the risk of injury and illness. To this end, technological advancements have enabled the collection of multiple points of data for use in analysis and injury prediction. The full breadth of available data has, however, only recently begun to be explored using suitable statistical methods. Advances in automatic and interactive data analysis with the help of machine learning are now being used to better establish the intricacies of the player load and injury relationship. In this article, we examine this recent research, describing the analyses and algorithms used, reporting the key findings, and comparing model fit. To date, the vast array of variables used in analysis as proxy indicators of player load, alongside differences in approach to key aspects of data treatment—such as response to data imbalance, model fitting, and a lack of multi-season data—limit a systematic evaluation of findings and the drawing of a unified conclusion. If, however, the limitations of current studies can be addressed, machine learning has much to offer the field and could in future provide solutions to the training load and injury paradox through enhanced and systematic analysis of athlete data
Preliminary evaluation of spectral, normal and meteorological crop stage estimation approaches
Several of the projects in the AgRISTARS program require crop phenology information, including classification, acreage and yield estimation, and detection of episodal events. This study evaluates several crop calendar estimation techniques for their potential use in the program. The techniques, although generic in approach, were developed and tested on spring wheat data collected in 1978. There are three basic approaches to crop stage estimation: historical averages for an area (normal crop calendars), agrometeorological modeling of known crop-weather relationships agrometeorological (agromet) crop calendars, and interpretation of spectral signatures (spectral crop calendars). In all, 10 combinations of planting and biostage estimation models were evaluated. Dates of stage occurrence are estimated with biases between -4 and +4 days while root mean square errors range from 10 to 15 days. Results are inconclusive as to the superiority of any of the models and further evaluation of the models with the 1979 data set is recommended
Single Color Centers Implanted in Diamond Nanostructures
The development of materials processing techniques for optical diamond
nanostructures containing a single color center is an important problem in
quantum science and technology. In this work, we present the combination of ion
implantation and top-down diamond nanofabrication in two scenarios: diamond
nanopillars and diamond nanowires. The first device consists of a 'shallow'
implant (~20nm) to generate Nitrogen-vacancy (NV) color centers near the top
surface of the diamond crystal. Individual NV centers are then isolated
mechanically by dry etching a regular array of nanopillars in the diamond
surface. Photon anti-bunching measurements indicate that a high yield (>10%) of
the devices contain a single NV center. The second device demonstrates 'deep'
(~1\mu m) implantation of individual NV centers into pre-fabricated diamond
nanowire. The high single photon flux of the nanowire geometry, combined with
the low background fluorescence of the ultrapure diamond, allows us to sustain
strong photon anti-bunching even at high pump powers.Comment: 20 pages, 7 figure
- …