66 research outputs found
Projected Range Contractions of European Protected Oceanic Montane Plant Communities: Focus on Climate Change Impacts Is Essential for Their Future Conservation
Global climate is rapidly changing and while many studies have investigated the potential impacts of this on the distribution of montane plant species and communities, few have focused on those with oceanic montane affinities. In Europe, highly sensitive bryophyte species reach their optimum occurrence, highest diversity and abundance in the northwest hyperoceanic regions, while a number of montane vascular plant species occur here at the edge of their range. This study evaluates the potential impact of climate change on the distribution of these species and assesses the implications for EU Habitats Directive-protected oceanic montane plant communities. We applied an ensemble of species distribution modelling techniques, using atlas data of 30 vascular plant and bryophyte species, to calculate range changes under projected future climate change. The future effectiveness of the protected area network to conserve these species was evaluated using gap analysis. We found that the majority of these montane species are projected to lose suitable climate space, primarily at lower altitudes, or that areas of suitable climate will principally shift northwards. In particular, rare oceanic montane bryophytes have poor dispersal capacity and are likely to be especially vulnerable to contractions in their current climate space. Significantly different projected range change responses were found between 1) oceanic montane bryophytes and vascular plants; 2) species belonging to different montane plant communities; 3) species categorised according to different biomes and eastern limit classifications. The inclusion of topographical variables in addition to climate, significantly improved the statistical and spatial performance of models. The current protected area network is projected to become less effective, especially for specialised arctic-montane species, posing a challenge to conserving oceanic montane plant communities. Conservation management plans need significantly greater focus on potential climate change impacts, including models with higher-resolution species distribution and environmental data, to aid these communities’ long-term survival
The impact of red deer on liverwort-rich oceanic heath vegetation
Background: There is concern about increasing numbers of large herbivores including red deer (Cervus elaphus) but little is known about their impact on bryophytes.
Aims: This study set out to determine the effect of different localised densities of red deer on the internationally important Northern Atlantic hepatic mat, characteristic of oceanic heath vegetation, at four locations in the Scottish Highlands where sheep have been absent for decades.
Methods: Thirty 7 m x 7 m plots were randomly located in each study area. The standing crop dung pellet group count method was used to estimate red deer density. Species richness, diversity and cover of hepatic mat liverworts were obtained from 1 m x 1 m quadrats placed at random within the sample plots. Calluna vulgaris cover, ericoid height, rock cover, gradient and altitude were also recorded.
Results: Model simplification in ANCOVA revealed a consistent pattern of decreasing cover of hepatic mat and Calluna with increasing red deer density at all four study areas. Northern Atlantic hepatic mat cover, diversity and species richness were positively correlated with Calluna cover.
Conclusions: The data suggest that Calluna cover is reduced (through trampling and browsing) at high local densities of red deer which has had cascading effects on the Northern Atlantic hepatic mat. Alternative explanations are discussed
A miniature world in decline: European Red List of Mosses, Liverworts and Hornworts
AimThis Red List is a summary of the conservation status of the European species of mosses, liverworts and hornworts, collectively known as bryophytes, evaluated according to IUCN’s Guidelines for Application of IUCN Red List Criteria at Regional Level. It provides the first comprehensive, region-wide assessment of bryophytes and it identifies those species that are threatened with extinction at a European level, so that appropriate policy measures and conservation actions, based on the best available evidence, can be taken to improve their status.ScopeAll bryophytes native to or naturalised in Europe (a total of 1,817 species), have been included in this Red List. In Europe, 1,796 species were assessed, with the remaining 21 species considered Not Applicable (NA). For the EU 28, 1,728 species were assessed, with a remaining 20 species considered NA and 69 species considered Not Evaluated (NE). The geographical scope is continentwide, extending from Iceland in the west to the Urals in the east, and from Franz Josef Land in the north to theCanary Islands in the south. The Caucasus region is not included. Red List assessments were made at two regional levels: for geographical Europe and for the 28 Member States of the European Union.ResultsOverall, 22.5% of European bryophyte species assessed in this study are considered threatened in Europe, with two species classified as Extinct and six assessed as Regionally Extinct (RE). A further 9.6% (173 species) are considered Near Threatened and 63.5% (1,140 species) are assessed as Least Concern. For 93 species (5.3%), there was insufficient information available to be able to evaluate their risk of extinction and thus they were classified as Data Deficient (DD). The main threats identified were natural system modifications (i.e., dam construction, increases in fire frequency/intensity, and water management/use), climate change (mainly increasing frequency of droughts and temperature extremes), agriculture (including pollution from agricultural effluents) and aquaculture.RecommendationsPolicy measures• Use the European Red List as the scientific basis to inform regional/national lists of rare and threatened species and to identify priorities for conservation action in addition to the requirements of the Habitats Directive, thereby highlighting the conservation status of bryophytes at the regional/local level.• Use the European Red List to support the integration of conservation policy with the Common Agricultural Policy (CAP) and other national and international policies. For example, CAP Strategic Plans should include biodiversity recovery commitments that could anticipate, among others, the creation of Important Bryophyte Areas. An increased involvement of national environmental agencies in the preparation of these strategic plans, and more broadly in ongoing discussions on the Future CAP Green Architecture, would likely also ensure the design of conservation measures better tailored to conserve bryophytes in agricultural landscapes.• Update the European Red List every decade to ensure that the data remains current and relevant.• Develop Key Biodiversity Areas for bryophytes in Europe with a view to ensuring adequate site-based protection for bryophytes.Research and monitoring• Use the European Red List as a basis for future targeted fieldwork on possibly extinct and understudied species.• Establish a monitoring programme for targeted species (for example, threatened species and/or arable bryophytes).• Use the European Red List to obtain funding for research into the biology and ecology of key targeted species.Action on the ground• Use the European Red List as evidence to support multi-scale conservation initiatives, including designation of protected areas, reform of agricultural practices and land management, habitat restoration and rewilding, and pollution reduction measures.• Use the European Red List as a tool to target species that would benefit the most from the widespread implementation of the solutions offered by the 1991 Nitrates Directive (Council Directive 91/676/EEC), including the application of correct amounts of nutrients for each crop, only in periods of crop growth under suitable climatic conditions and never during periods of heavy rainfall or on frozen ground, and the creation of buffer zones to protect waters from run-off from the application of fertilizers.Ex situ conservation• Undertake ex situ conservation of species of conservation concern in botanic gardens and spore and gene banks, with a view to reintroduction where appropriate.</p
- …